• Title/Summary/Keyword: Heterologous

Search Result 465, Processing Time 0.03 seconds

Soluble Production of CMP-Neu5Ac Synthetase by Co-expression of Chaperone Proteins in Escherichia coli (샤페론 단백질 동시 발현기술을 이용한 수용성 CMP-Neu5Ac Synthetase 생산)

  • Choi, Hwa Young;Li, Ling;Cho, Seung Kee;Lee, Won-Heong;Seo, Jin-Ho;Han, Nam Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.190-193
    • /
    • 2014
  • CMP-Neu5Ac synthetase is a key enzyme for the synthesis of CMP-Neu5Ac, which is an essential precursor of sialylated glycoconjugates. For the soluble expression of the CMP-Neu5Ac synthetase gene (neuA) from Escherichia coli K1, various heat shock proteins were co-expressed in E. coli BL21 (DE3) Star. In order to do this, a pG-KJE8 plasmid, encoding genes for GroEL-ES and DnaK-DnaJ-GrpE, was co-transformed with neuA and was expressed at $20^{\circ}C$ by the addition of 0.01 mM IPTG and 0.005 mg/ml L-arabinose. The co-expression of a variety of heat shock proteins resulted in the remarkably improved production of soluble CMP-Neu5Ac synthetase in E. coli.

Multiple Alternating Immunizations with DNA Vaccine and Replication-incompetent Adenovirus Expressing gB of Pseudorabies Virus Protect Animals Against Lethal Virus Challenge

  • Kim, Seon-Ju;Kim, Hye-Kyung;Han, Young-Woo;Aleyas, Abi G.;George, Junu A.;Yoon, Hyun-A;Yoo, Dong-Jin;Kim, Koan-Hoi;Eo, Seong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1326-1334
    • /
    • 2008
  • The prime-boost vaccination with DNA vaccine and recombinant viral vector has emerged as an effective prophylactic strategy to control infectious diseases. Here, we compared the protective immunities induced by multiple alternating immunizations with DNA vaccine (pCIgB) and replication-incompetent adenovirus (Ad-gB) expressing glycoprotein gB of pseudorabies virus (PrV). The platform of pCIgB-prime and Ad-gB-boost induced the most effective immune responses and provided protection against virulent PrV infection. However, priming with pCIgB prior to vaccinating animals by the DNA vaccine-prime and Ad-boost protocol provided neither effective immune responses nor protection against PrV. Similarly, boosting with Ad-gB following immunization with DNA vaccine-prime and Ad-boost showed no significant responses. Moreover, whereas the administration of Ad-gB for primary immunization induced Th2-type-biased immunity, priming with pCIgB induced Th1-type-biased immunity, as judged by the production of PrV-specific IgG isotypes and cytokine IFN-$\gamma$. These results indicate that the order and injection frequency of vaccine vehicles used for heterologous prime-boost vaccination affect the magnitude and nature of the immunity. Therefore, our demonstration implies that the prime-boost protocol should be carefully considered and selected to induce the desired immune responses.

Reduction of Antigenicity of Bovine Casein by Microbial Enzymes (미생물효소에 의한 우유 casein의 항원성 저감화)

  • Choe, Hyeon-Seok;Ahn, Jong-Nam;Jeong, Seok-Geun;Ham, Jun-Sang;In, Yeong-Min;Kim, Dong-Un
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 2003
  • It is extremely important to destroy the antigenicity of milk proteins for dietetic treatment of infants with milk allergy. Enzymatic digestion of milk protein is not only effective for destroying antigenicity, but it also is less liable to alter the nutritive value. Bovine casein was hydrolyzed with eight different commercial proteases derived from bacterias or fungi, either individually or in combination to eliminate protein allergenicity. The average molecular weight of casein hyrdolysates determined by size exclusion chromatography is about 550${\sim}$2,300 dalton range. Antigenicity of the casein hyrdolysates was not detected by heterologous passive cutaneous anaphylaxis in guinea pig-rabbit antiserum system. The inhibition test on the enzyme-linked immunosorbent assay(ELISA) showed that the antigenicity of casein hydrolysates is lowed up to 1/8,000 than that of intact bovine casein. As the enzyme reaction was carried out by the combination of bacterial and fungal protease, casein hydrolysates showed much lower bitterness and antigenicity. It suggests that these hydrolysates will be applied to many kinds of foods including the development of hypo-allergenic infant formula.

  • PDF

The Morphological Changes of Cryopreserved Rat Trachea After Heterotopic Transplantation (쥐의 초냉동기관 이소 이식 후 형태학적 변화)

  • 성숙환;서정욱;박종호;김경환
    • Journal of Chest Surgery
    • /
    • v.29 no.11
    • /
    • pp.1182-1190
    • /
    • 1996
  • The best treatment of congenital or acquired tracheal stenosis is resection and end to end anastomosis. Various prosthetic material and tissue graft replacement can be considered when the stenotic segment is too long, but their uses are still limited due to many serious complications. The present study examined the effect of immunosuppression and cryopreserved allograft trachea after intraperitoneal omental implantation for evaluation of the possibility of tracheal transplantation. Thirty tracheal segments were harvested from fifteen donor Wistar rats. Among them eighteen segments were implanted immediately(group I, II, III) and twelve segments were used for cryopreservation(group IV, V). Heterotopical intraperitoneal implantation was performed in five groups of rats(n=6); Group I was Wistar syngeneic controls and received no immunosuppression. Group II and III were those of Sprague-Dawley recipients, the former receiving no immunosuppression and the latter receiving immunosuppression(Cyclosporin A 15mg/kg/day, Methylprednisolone 2mg/kg/day). Group IV and V were groups of Sprague-Dawley recipients, the former receiving immunosuppression and the latter receiving no Immunosuppression. After 28 days, rats were sacrificed and the tracheal segments were histologically evaluated. Epithelial thickness was significantly decreased in group II, IV. Epithelial regeneration score was also significantly decreased in II. All rats maintained well their round tracheal contour. In conclusion; I) trachea could be preserved for a long time with cryo method, 2) epithelium could regenerate fully with omentopexy in cryopreserved trachea, 3) immunosuppresion was not necessary with cryopreserved trachea.

  • PDF

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

Analysis of Efficiency of Recombinant pOPINEneo-3C-GFP Vector with p53 Tumor Suppression Gene Inserted (p53 암억제 유전자가 삽입된 재조합 pOPINEneo-3C-GFP 벡터의 효율 분석)

  • Sa, Young-Hee;Choi, Chang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.533-536
    • /
    • 2019
  • Recombinant baculoviruses are widely used to express heterologous genes in cultured insect cells. Recombinant baculoviruses can serve as gene-transfer vectors for expression of recombinant proteins in a wide range of mammalian cell types. Baculovirus system has significant benefits in view of safety, large-scale, and high level of gene expression. In this study, baculoviral vectors which were reconstructed from pOPINEneo-3C-GFP vector, were recombined with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP), and p53 with NcoI and XhoI. These recombinant vectors were infected with various cells and cell lines. The baculovirus vector thus developed was analyzed by comparing the metastasis and expression of the recombinant genes with conventional vectors. These results suggest that the baculovirus vector has higher efficiency in metastasis and expression than the control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF

Recombinant Production and Antimicrobial Activity of an Antimicrobial Model Peptide (Uu-ilys-CF) Derived from Spoon Worm Lysozyme, Uu-ilys (개불 라이소자임 유래 항균성 모델 펩타이드(Uu-ilys-CF)의 재조합 단백질 생산 및 항균 활성)

  • Oh, Hye Young;Go, Hye-Jin;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Uu-ilys, an i-type lysozyme from spoon worm (Urechis unicinctus), is an innate immune factor that plays an important role in the defense against pathogens. It also possesses non-enzymatic antibacterial activity. Thus, there is a possibility to develop an antimicrobial model peptide from Uu-ilys. In this study, we report the design, production, and antibacterial activity of an Uu-ilys analog that exhibits antibacterial activity. The Uu-ilys structure was fragmented according to its secondary structures to predict the regions with antimicrobial activity using antimicrobial peptide (AMP) prediction tools from different AMP databases. A peptide containing the C-terminal fragment was predicted to exert antimicrobial activity. The chosen fragment was designated as an Uu-ilys analog containing the C-terminal fragment, Uu-ilys-CF. To examine the possibility of developing an AMP using the sequence of Uu-ilys-CF, recombinant fusion protein (TrxA-Uu-ilys-CF) was produced in an expression system that was heterologous. The produced fusion protein was cleaved after methionine leaving Uu-ilys-CF free from the fusion protein. This was then isolated through high performance liquid chromatography and reverse phase column, CapCell-Pak C18. The antibacterial activity of Uu-ilys-CF against different microbial strains (four gram-positive, six gram-negative, and one fungal strain) were assessed through the ultrasensitive radial diffusion assay (URDA). Among the bacterial strains tested, Salmonella enterica was the most susceptible. While the fungal strain tested was not susceptible to Uu-ilys-CF, broad spectrum antibacterial activity was observed.

Genomic analysis of Sheldrake origin goose hemorrhagic polyomavirus, China

  • Wan, Chunhe;Chen, Cuiteng;Cheng, Longfei;Liu, Rongchang;Fu, Guanghua;Shi, Shaohua;Chen, Hongmei;Fu, Qiuling;Huang, Yu
    • Journal of Veterinary Science
    • /
    • v.19 no.6
    • /
    • pp.782-787
    • /
    • 2018
  • Goose hemorrhagic polyomavirus (GHPV) is not a naturally occurring infection in geese in China; however, GHPV infection has been identified in Pekin ducks, a domestic duck species. Herein, we investigated the prevalence of GHPV in five domestic duck species (Liancheng white ducks, Putian black ducks, Shan Sheldrake, Shaoxing duck, and Jinyun Sheldrake) in China. We determined that the Jinyun Sheldrake duck species could be infected by GHPV with no clinical signs, whereas no infection was identified in the other four duck species. We sequenced the complete genome of the Jinyun Sheldrake origin GHPV. Genomic data comparison suggested that GHPVs share a conserved genomic structure, regardless of the host (duck or geese) or region (Asia or Europe). Jinyun Sheldrake origin GHPV genomic characterization and epidemiological studies will increase our understanding of potential heterologous reservoirs of GHPV.

Heterologous Expression of Interferon α-2b in Lactococcus lactis and its Biological Activity against Colorectal Cancer Cells

  • Meilina, Lita;Budiarti, Sri;Mustopa, Apon Zaenal;Darusman, Huda Shalahudin;Triratna, Lita;Nugraha, Muhammad Ajietuta;Bilhaq, Muhammad Sabiq;Ningrum, Ratih Asmana
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • Type I Interferons (IFNα) are known for their role as biological anticancer agents owing to their cell-apoptosis inducing properties. Development of an appropriate, cost-effective host expression system is crucial for meeting the increasing demand for proteins. Therefore, this study aims to develop codon-optimized IFNα-2b in L. lactis NZ3900. These cells express extracellular protein using the NICE system and Usp45 signal peptide. To validate the mature form of the expressed protein, the recombinant IFNα-2b was screened in a human colorectal cancer cell line using the cytotoxicity assay. The IFNα-2b was successfully cloned into the pNZ8148 vector, thereby generating recombinant L. lactis pNZ8148-SPUsp45-IFNα-2b. The computational analysis of codon-optimized IFNα-2b revealed no mutation and amino acid changes; additionally, the codon-optimized IFNα-2b showed 100% similarity with native human IFNα-2b, in the BLAST analysis. The partial size exclusion chromatography (SEC) of extracellular protein yielded a 19 kDa protein, which was further confirmed by its positive binding to anti-IFNα-2b in the western blot analysis. The crude protein and SEC-purified partial fraction showed IC50 values of 33.22 ㎍/ml and 127.2 ㎍/ml, respectively, which indicated better activity than the metabolites of L. lactis NZ3900 (231.8 ㎍/ml). These values were also comparable with those of the regular anticancer drug tamoxifen (105.5 ㎍/ml). These results demonstrated L. lactis as a promising host system that functions by utilizing the pNZ8148 NICE system. Meanwhile, codon-optimized usage of the inserted gene increased the optimal protein expression levels, which could be beneficial for its large-scale production. Taken together, the recombinant L. lactis IFNα-2b is a potential alternative treatment for colorectal cancer. Furthermore, its activity was analyzed in the WiDr cell line, to assess its colorectal anticancer activities in vivo.

Expression of Antimicrobial Peptide (AMP), Moricin Using SUMO Fusion Tag in Escherichia coli (대장균에서 SUMO fusion tag을 이용하여 항균펩타이드인 moricin의 발현)

  • Ahn, Dong-gyu;Park, Sun Ill;Kim, Soon Young
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.956-961
    • /
    • 2022
  • Plant Chloroplast have several advantages as an expression platform of biopharmaceuticals over conventional expression platforms such as mammalian cells, yeast and bacteria. First, plants do not serve as a host for mammalian infectious virus and have endotoxin like bacteria which can cause anaphylactic shock. In addition, high copy number of chloroplast genome allows for chloroplast transformants to reach the high level of expression of heterologous genes. Moreover, the integration of transgenes into specific region of chloroplast genomes makes chloroplast transformants unaffected by positional effect which can be frequently observed from nuclear transformants, resulting in loss of transgene expressions. Antimicrobial peptides (AMPs) are a kind of innate immunity which is found from bacteria to humans. Unlike conventional antibiotics, very less dosage of AMPs can have catastrophic effect on bacterial survival. Further, the repeated use of AMPs does not trigger the development of bacterial resistance. Moricin, one of the AMPs, was isolated from Bombyx mori, a silkworm moth. The C-terminal of moricin consists largely of basic amino acids, and the N-terminal has an α-helix structure. Moricin was chosen and expressed in a SUMO/SUMOase without leaving any unwanted amino acids which could potentially affect the anti-bacterial activity of the moricin. The transformation vector used in this study has already been created in this lab for the expression in both prokaryotic systems such as E. coli and chloroplast. The expressed moricin was purified using Ni columns and SUMOase, and the antibacterial activity of the purified moricin was confirmed using an agar diffusion assay.