• Title/Summary/Keyword: Heterogeneous wireless networks

Search Result 289, Processing Time 0.025 seconds

Formalizing the Design, Evaluation, and Analysis of Quality of Protection in Wireless Networks

  • Lim, Sun-Hee;Yun, Seung-Hwan;Lim, Jong-In;Yi, Ok-Yeon
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.634-644
    • /
    • 2009
  • A diversity of wireless networks, with rapidly evolving wireless technology, are currently in service. Due to their innate physical layer vulnerability, wireless networks require enhanced security components. WLAN, WiBro, and UMTS have defined proper security components that meet standard security requirements. Extensive research has been conducted to enhance the security of individual wireless platforms, and we now have meaningful results at hand. However, with the advent of ubiquitous service, new horizontal platform service models with vertical crosslayer security are expected to be proposed. Research on synchronized security service and interoperability in a heterogeneous environment must be conducted. In heterogeneous environments, to design the balanced security components, quantitative evaluation model of security policy in wireless networks is required. To design appropriate evaluation method of security policies in heterogeneous wireless networks, we formalize the security properties in wireless networks. As the benefit of security protocols is indicated by the quality of protection (QoP), we improve the QoP model and evaluate hybrid security policy in heterogeneous wireless networks by applying to the QoP model. Deriving relative indicators from the positive impact of security points, and using these indicators to quantify a total reward function, this paper will help to assure the appropriate benchmark for combined security components in wireless networks.

Communication Pattern Based Key Establishment Scheme in Heterogeneous Wireless Sensor Networks

  • Kim, Daehee;Kim, Dongwan;An, Sunshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1249-1272
    • /
    • 2016
  • In this paper, we propose a symmetric key establishment scheme for wireless sensor networks which tries to minimize the resource usage while satisfying the security requirements. This is accomplished by taking advantage of the communication pattern of wireless sensor networks and adopting heterogeneous wireless sensor networks. By considering the unique communication pattern of wireless sensor networks due to the nature of information gathering from the physical world, the number of keys to be established is minimized and, consequently, the overhead spent for establishing keys decreases. With heterogeneous wireless sensor networks, we can build a hybrid scheme where a small number of powerful nodes do more works than a large number of resource-constrained nodes to provide enhanced security service such as broadcast authentication and reduce the burden of resource-limited nodes. In addition, an on-demand key establishment scheme is introduced to support extra communications and optimize the resource usage. Our performance analysis shows that the proposed scheme is very efficient and highly scalable in terms of storage, communication and computation overhead. Furthermore, our proposed scheme not only satisfies the security requirements but also provides resilience to several attacks.

A scheme on multi-tier heterogeneous networks for citywide damage monitoring in an earthquake

  • Fujiwara, Takahiro;Watanabe, Takashi;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.497-510
    • /
    • 2013
  • Quick, accurate damage monitoring is strongly required for damage assessment in the aftermath of a large natural disaster. Wireless sensor networks are promising technologies to acquire damage information in a citywide area. The wireless sensor networks, however, would be faced with difficulty to collect data in real-time and to expand the scalability of the networks. This paper discusses a scheme of network architecture to cove a whole city in multi-tier heterogeneous networks, which consist of wireless sensor networks, access networks and a backbone network. We first review previous studies for citywide damage monitoring, and then discuss the feature of multi-tier heterogeneous networks to cover a citywide area.

A Virtual-Queue based Backpressure Scheduling Algorithm for Heterogeneous Multi-Hop Wireless Networks

  • Jiao, Zhenzhen;Zhang, Baoxian;Zheng, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.12
    • /
    • pp.4856-4871
    • /
    • 2015
  • Backpressure based scheduling has been considered as a promising technique for improving the throughput of a wide range of communication networks. However, this scheduling technique has not been well studied for heterogeneous wireless networks. In this paper, we propose a virtual-queue based backpressure scheduling (VQB) algorithm for heterogeneous multi-hop wireless networks. The VQB algorithm introduces a simple virtual queue for each flow at a node for backpressure scheduling, whose length depends on the cache size of the node. When calculating flow weights and making scheduling decisions, the length of a virtual queue is used instead of the length of a real queue. We theoretically prove that VQB is throughput-optimal. Simulation results show that the VQB algorithm significantly outperforms a classical backpressure scheduling algorithm in heterogeneous multi-hop wireless networks in terms of the packet delivery ratio, packet delivery time, and average sum of the queue lengths of all nodes per timeslot.

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Priority Based Interface Selection for Overlaying Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7B
    • /
    • pp.1009-1017
    • /
    • 2010
  • Offering of different attractive opportunities by different wireless technologies trends the convergence of heterogeneous networks for the future wireless communication system. To make a seamless handover among the heterogeneous networks, the optimization of the power consumption, and optimal selection of interface are the challenging issues. The access of multi interfaces simultaneously reduces the handover latency and data loss in heterogeneous handover. The mobile node (MN) maintains one interface connection while other interface is used for handover process. However, it causes much battery power consumption. In this paper we propose an efficient interface selection scheme including interface selection algorithms, interface selection procedures considering battery power consumption and user mobility with other existing parameters for overlaying networks. We also propose a priority based network selection scheme according to the service types. MN‘s battery power level, provision of QoS/QoE and our proposed priority parameters are considered as more important parameters for our interface selection algorithm. The performances of the proposed scheme are verified using numerical analysis.

Multi-homing in Heterogeneous Wireless Access Networks: A Stackelberg Game for Pricing

  • Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.1973-1991
    • /
    • 2018
  • Multimedia applications over wireless networks have been evolving to augmented reality or virtual reality services. However, a rich data size compared to conventional multimedia services causes bandwidth bottlenecks over wireless networks, which is one of the main reasons why those applications are not used widely. To overcome this limitation, bandwidth aggregation techniques, which exploit a multi-path transmission, have been considered to maximize link utilization. Currently, most of the conventional researches have been focusing on the user end problems to improve the quality of service (QoS) through optimal load distribution. In this paper, we address the joint pricing and load distribution problem for multi-homing in heterogeneous wireless access networks (ANs), considering the interests of both the users and the service providers. Specifically, we consider profit from resource allocation and cost of power consumption expenditure for operation as an utility of each service provider. Here, users decide how much to request the resource and how to split the resource over heterogeneous wireless ANs to minimize their cost while supporting the required QoS. Then, service providers compete with each other by setting the price to maximize their utilities over user reactions. We study the behaviors of users and service providers by analyzing their hierarchical decision-making process as a multileader-, multifollower Stackelberg game. We show that both the user and service provider strategies are closed form solutions. Finally, we discuss how the proposed scheme is well converged to equilibrium points.

A Framework for Multiple Wireless Services in Heterogeneous Wireless Networks (중첩된 이기종 무선망에서의 다중 무선 서비스 프레임워크)

  • Shin, Choong-Yong;Cho, Jin-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.85-94
    • /
    • 2008
  • As a variety of wireless network services, such as WLAN, WiBro, cdma2000, and HSDPA, are provided and the range of users' choices for the wireless services are broaden, MCoA (Multiple Car-of Address) concepts that enable users to use wireless interfaces simultaneously have been presented in IETF MONAMI6 WG. Through this scheme, users can access several networks simultaneously by using multiple wireless interfaces. Such various wireless connection technologies continue to advance as they are connected and integrated to All-IP-based core network, and at the same time, heterogeneous networks are being managed overlaid according to the coverage of the wireless connection technologies. Under such circumstances, needs for an integrated architecture have arisen, and thus Wireless service framework is required that effectively manages heterogeneous networks which coexist with next generation's networks for 4G. In this paper, a wireless service framework is suggested in the consideration of current wireless service environment, and the framework covers the schemes to minimize the packet loss caused by handover, and also modified Multiple Care-of Address that helps to select most effective network by considering characteristics of various interfaces as well as users' preferences.

  • PDF

Data-centric Sensor Middleware for Heterogeneous Sensor Networks (이기종 센서 네트워크를 위한 데이터 중심적 센서 미들웨어)

  • Nam, Choon-Sung;Shin, Dong-Ryeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.323-330
    • /
    • 2012
  • Wireless sensor networks need middleware system for efficiently managing the constrained resource and sensing data because they need different sensing data type and protocol to communicate with heterogeneous sensor networks. Thus this paper proposes data-centric sensor middleware for heterogeneous sensor networks. The proposed middleware have to support various query processing of user applications, high-level request of users, manage heterogeneous sensor systems and universal sensing data type for node and user application.

Converged Mobile Cellular Networks and Wireless Sensor Networks for Machine-to-Machine Communications

  • Shan, Lianhai;Li, Zhenhong;Hu, Honglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.147-161
    • /
    • 2012
  • In recent years, machine-to-machine (M2M) communications are under rapid development to meet the fast-increasing requirements of multi-type wireless services and applications. In order to satisfy M2M communications requirements, heterogeneous networks convergence appears in many areas, i.e., mobile cellular networks (MCNs) and wireless sensor networks (WSNs) are evolving from heterogeneous to converged. In this paper, we introduce the system architecture and application requirement for converged MCN and WSN, where mobile terminals in MCN are acting as both sensor nodes and gateways for WSN. And then, we discuss the joint optimization of converged networks for M2M communications. Finally, we discuss the technical challenges in the converged process of MCN and WSN.