• Title/Summary/Keyword: Hertzian Contact

Search Result 169, Processing Time 0.029 seconds

Contact Surface Fatigue Life for RPG System (RPG 시스템의 접촉 피로수명)

  • Nam, Hyoung-Chul;Kwon, Soon-Man;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1453-1459
    • /
    • 2011
  • A roller pinion gear (RPG) system composed of either a pin or a roller and its conjugated cam gear can improve the gear endurance from that of a conventional gear system by reducing the sliding contact while increasing the rolling motion. In this paper, we first proposed the exact cam gear profile and the self-intersection condition obtained when the profile shift coefficient is introduced. Then, we investigated the Hertzian contact stresses and the load stress factors while the varying the shape design parameters to predict the gear surface fatigue life, which is strongly related to the gear noise and vibration at the contact patch. The results show that the pitting life can be extended significantly by increasing the profile shift coefficient.

Characteristics of High Frequency Induction-Hardened Bearing Steel Produced by VIM (VIM에 의해 제조된 고주파 유도경화 베어링강의 특성에 관한 연구)

  • Choe, Byeong-Yeong;Jang, Jeong-Seok
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1176-1181
    • /
    • 1998
  • Characteristics of high frequency induction- hardened bearing steel have been investigated using 0.55wt.% C-1.68wt.% Mn specimens produced by vacuum induction melting (VIM). The K4 value in DIN 57602 of the specimens was assessed to be 6.41, high level of cleanliness. The specimens were high frequency induction-hardened to form heterogeneous submicron- lath martensite in the surface hardened layer with about 2.5mm in effective depth. Rolling contact fatigue tests were conducted in elasto-hydrodynamic lubricating conditions under a maximum Hertzian contact stress of$ 492kgmm^{-2}$ . It was found that microhardness in the subsurface, up to about $500\mu\textrm{m}$ in depth, below the raceway of rolling contact fatigued specimens was increased in comparison with that of induction-hardened layers. The depth of maximum microhardness- increased region was about $100\mu\textrm{m}$ from surface, showing white etching area. Crack initiation and propagation in the white etching area below the raceway of rolling contact fatigued specimens were observed.

  • PDF

Dynamic Response Analysis of a Flexible Rotor During Impact on Backup Bearings (탄성 로터의 백업베어링 충돌 시 동적 응답 해석)

  • Park, K.J.;Bae, Y.C.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • Active magnetic bearings(AMBs) present a technology which has many advantages compared to traditional bearing concepts. However, they require backup bearings in order to prevent damages in the event of a system failure. In this study, the dynamics of an AMB supported rotor during impact on backup bearings is studied employing a detailed simulation model. The backup bearings are modeled using an accurate ball bearing model, and the model for a flexible rotor system is described using the finite element approach with the component mode synthesis. Not only the influence of the support stiffness, clearance and friction coefficient on the rotor orbit, but also bearing load are compared for various rotor system parameters. Comparing these results it is shown that the optimum backup bearing system can be applicable for a specific rotor system.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Damage Tolerance in Hardly Coated Layer Structure with Modest Elastic Modulus Mismatch

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1638-1649
    • /
    • 2003
  • A study is made on the characterization of damage tolerance by spherical indentation in hardly coated layer structure with modest elastic modulus mismatch. A hard silicon nitride is prepared for the coating material and silicon nitride with 5wt% of boron nitride composites for underlayer. Hot pressing to eliminate the effect of interface delamination during the fracture makes strong interfacial bonding. The elastic modulus mismatch between the layers is not only large enough to suppress the surface crack initiation from the coating layer but sufficiently small to prevent the initiation of radial crack from the interface. The strength degradation of the layer structure after sphere contact indentation does not significantly occur, while the degradation of silicon nitride-boron nitride composite is critical at a high load and high number of contacts.

Improvement of Handrail Slippage Characteristics Using Multi-Body Dynamic Analysis Technique (다물체 동역학 해석기술을 이용한 핸드레일의 슬립특성 개선)

  • Park, Chan-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1422-1428
    • /
    • 2004
  • In this paper, computer simulation model of handrail band including pulley-driving system is developed to calculate handrail slippage. This handrail simulation model is validated with test result within operating range and used to predict its slippage behavior with respect to variation of 4 different design parameters considering the applicability into the real handrail system. Based upon this parameter study, optimal condition for handrail slippage improvement is proposed without time-consuming and costly experiments of the real handrail system. And then performance improvement of handrail slippage complied with safety code is achieved after applying the optimal condition into the real handrail band system.

A Study on Optimal Wear Design for a Gerotor Pump (제로터 펌프의 마멸 최적설계에 관한 연구)

  • Kwon, Soon-Man;Nam, Hyoung-Chul;Lu, Lei;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • A disadvantage in the design of gerotor pump is a lack of parts that can be adjusted to compensate for wear in the rotor set, and as a consequence, it causes a sharp reduction of efficiency. In this paper, an attempt has been made to reduce the wear rate between the rotors of a gerotor pump. To do this, floating genetic algorithm (FGA) is used as an optimization technique for minimizing the wear rate proportional factor (WRPF). The result shows that the wear rate can be reduced considerably, e.g. approximately 8% in this paper, throughout the optimization using FGA.

An Analysis of Elastohydrodynamic Lubrication of Elliptical Contacts:Part I (타원접촉의 탄성유체윤활해석:제1보)

  • 박태조;현준수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.212-218
    • /
    • 1998
  • This paper presents a study of the elastohydrodynamic lubrication of elliptical contacts where lubricant entrainment coincides with the major axis of the Hertzian contact ellipse. A finite difference method and the Newton-Raphson method are applied to analyze the problem. Film contours and pressure distributions are compared with the results for lubricant entrainment coincides with the minor axis. Variations of the minimum and central film thicknesses with the radius ratio are also examined. Therefore, the present numerical scheme can be used generally in the analysis of the EHL of elliptical contacts where the lubricant entraining vector did not coincide with either of the principal axis of the conjunction.

  • PDF

Cam/Tappet Wear in Diesel Engine (Diesel Engine에서의 Cam/Tappet 마모)

  • 심동섭;김경운;조정환
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.100-109
    • /
    • 1997
  • Tappet is the part which consists of valve train system in Over Head Valve type diesel engine. The role of tappet is to open and close the intake/exhaust valve by rotating with cam. There are wear problems like scuffing or pitting in cam/tappet system because of the higher Hertzian contact stress and sliding wear characteristics between cam and tappet. In this paper, to find optimal materials combination in cam/tappet system, wear test and rig test were performed. $Si_3N_4$, chilled cast iron, sintered alloy were selected for tappet materials. As the result of test, it is found that $Si_3N_4$ tappet has the excellent wear properties.

  • PDF

A Study on the Elastohydrodynanic Lubrication Analysis and the Modification of the Roller Profile in the Cam-Roller of the Valve Mechanism for a Marine Diesel Engine (박용디젤기관 밸브기구용 캠-롤러 사이의 탄성유체윤활해석 및 롤러 형상 수정에 관한 연구)

  • 구영필;강민호;이득우;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.121-128
    • /
    • 1999
  • In this study, a numerical procedure to analyze 3-dimensional unsteady elastohydrodynamic lubrication was developed. The procedure was applied to the actual cam and roller follower of the valve mechanism for a marine diesel engine. The pressure distribution between the cam and roller follower was calculated for the several cam rotating angles. The pressure spike is shown near the roller edge and it is getting higher as the external load is increased. The roller profile for reducing the pressure spike was suggested by the Hertzian contact analysis.

  • PDF