• 제목/요약/키워드: Hemodynamic Stress

검색결과 78건 처리시간 0.045초

우주비행 직후 인체 심혈관계의 혈류역학적 변화에 대한 수치적 연구 (Computational analysis of the hemodynamic changes in human cardiovascular system after space flight)

  • 심은보;고형종
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.123-128
    • /
    • 2000
  • Orthostatic stress in human cardiovascular system following spaceflight remains a critical problem in the current lifercience space program. The study presented in this paper is part of an ongoing effort to use mathematical models to investigate the effects of gravitational stresses on the cardiovascular system of normals and microgravity adapted individuals. We employ a twelve compartment lumped parameter representation of the hemodynamic system coupled to set-point models of the arterial baroreflex and the cardiopulmonary reflex to investigate the transient response of heart rate to orthostatic stress. We simulate current hypotheses concerning the mechanisms underlying postspaceflight orthostatic intolerance over a range of physiologically reasonable values and compare the simulations to astronaut stand-test data pre-and postflight.

  • PDF

관상동맥 협착부에 각이진 스텐트 시술시 혈류역학적 특성변화 (Changes of Hemodynamic Characteristics during Angulated Stenting in the Stenosed Coronary)

  • 서상호;조민태;권혁문;이병권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.717-720
    • /
    • 2002
  • The present study is to evaluate the performances of flow velocity and wall shear stress in the stenosed coronary artery using human in vivo hemodynamic Parameters and computer simulation. Initial and follow-up coronary angiographics in the patients with angulated coronary stenosis are performed. Follow-up coronary angiogram demonstrated significant difference in the percent of diameter in the stenosed coronary between two groups ($Group\;1:\;40.3{\%},\;Group\;2:\;25.5{\%}$). Flow-velocity wave obtained from in vivo intracoronary Doppler ultrasound data is used for the boundary condition for the computer simulation. Spatial and temporal variations of flow velocity vector and recirculation area are drawn throughout the selected segment of coronary models. The WSS of pre- and post-intracoronary stenting are calculated from three-dimensional computer simulation. Then negative shear stresses area on 3D simulation we noted on the inner wall of the post-stenotic area before stenting. The negative WSS is disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2. The present study suggest that hemodynamic forces exerted by pulsatile coronary circulation termed WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. The local recirculation area which has low or negative WSS, might lead to progression of atherosclerosis.

  • PDF

혈류의 유동이 혈관-인조혈관 접속부 혈관 내막 세포증식에 미치는 영향 (Hemodynamic Effects on Artery-Graft Anastomotic Intimal Hyperplasia)

  • 이계한
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권2호
    • /
    • pp.143-150
    • /
    • 1994
  • Wall shear rate or stress is believed to be a major hemodynamic variable influencing atherosclerosis and artery-graft anastomic intimal hyperplasia. The purpose of this study is to verify the effects of radial wall motion, artery-graft compliance and diameter mismatch, and impedance phase angle on the wall shear rate distribution near an end-to-end artery-graft anastomosis model. The results show that radial wall motion of the elastic artery model lowers the mean wall shear rates under pulsatile flow condition by 15 to 20 % comparing to those under steady flow condition at the same mean flow rate. Impedance phase angle seems to have small effects on the mean and amplitude of the wall shear rate distribution. In order to study the effects of compliance and diameter mismatch on the wall shear rates, two models are studied-Model I has 6% and Model I has 6% and Model II has 11% smaller graft diameter. Divergent geometry caused by diameter mismatch near the distal sites reduces the mean wall shear rates significantly, and this low shear region is believed to be prone to intimal hyperplasia.

  • PDF

뇌혈관질환에서 SPECT와 PET의 임상적 응용 (Clinical Application of SPECT and PET in CerebroVascular Disease)

  • 나영신
    • 대한핵의학회지
    • /
    • 제37권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative and quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures.

협착이 있는 탄성혈관을 흐르는 혈액의 유동특성에 관한 수치해석적 연구 (A Numerical Analysis on the Hemodynamic Characteristics in Elastic Blood Vessel with Stenosis)

  • 정삼두;김창녕
    • 대한의용생체공학회:의공학회지
    • /
    • 제23권4호
    • /
    • pp.281-286
    • /
    • 2002
  • 심혈관계에서 자주 발생하는 죽상경화증과 혈전의 발생 및 성장에 관한 복잡한 기전을 이해하기 위하여 뇌의 혈액공급을 담당하는 경동맥을 2차원 축대칭으로 모사하여 수치해석하였다. 박동유동 상태에서 경동맥 내에 25%. 50%, 75%의 협착이 형성된 경우에 대하여 혈관내의 속도분포 및 혈류역학적 벽 파라미터들이 고찰되었다. 혈액은 뉴턴유체 및 전단변형률에 따라 점성이 변화하는 비뉴턴유체로 간주되었으며 비뉴턴모델로는 혈액과 유사한 점성치를 나타내는 Carraeu-Yasuda 모델이 적용되었다. 해석 결과 혈관내벽에 작용하는 벽전단응력은 협착이 커질수록 크게 증가하였으며 비뉴턴유체보다 뉴턴유체의 경우에서 벽전단응력이 크게 평가되었다. 벽전단응력 진동지표(OSI)에 의해 시간평균 재부착점이 예측되었는데 비뉴턴유체보다 뉴턴유체의 경우에서 협착 영역으로부터 멀리 떨어진 곳에서 관찰되었다. 시간평균 벽전단응력구배(WSSG)도 협착이 큰 경우에 상당히 크게 나타났는데 비뉴턴유체보다 뉴턴 유체의 경우에 더 큰 값이 나타났다.

균일한 전단응력에 의한 혈관내피세포의 운동성 변화 (EFFECTS OF UNIFORM SHEAR STRESS ON THE MIGRATION OF VASCULAR ENDOTHELIAL CELL)

  • 신현정;송석현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1404-1408
    • /
    • 2008
  • The migration and proliferation of vascular endothelial cells (VEC), which play an important role in vascular remodeling, are known to be regulated by hemodynamic forces in the blood vessels. When shear stresses of 2, 6, 15 dynes/$cm^2$ are applied on mouse micro-VEC in vitro, cells surprisingly migrate against the flow direction at all conditions. While higher flow rate imposes more resistance against the cells, reducing their migration speed, the horizontal component of the velocity parallel to the flow increases with the flow rate, indicating the higher alignment of cells in the direction parallel to the flow at a higher shear stress. In addition, cells exhibit substrate stiffness and calcium dependent migration behavior, which can be explained by polarized remodeling in the mechanosensitive pathway under shear stress.

  • PDF

Shear Stress and Atherosclerosis

  • Heo, Kyung-Sun;Fujiwara, Keigi;Abe, Jun-Ichi
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.435-440
    • /
    • 2014
  • Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flowdependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.

협착부가 존재하는 혈관의 유동 특성에 관한 수치 해석적 연구 (A Numerical Analysis on the Hemodynamic Characteristics in the blood vessel with Stenosis)

  • 정훈;박찬국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1987-1992
    • /
    • 2004
  • Hemodynamics behavior of the blood flow is influenced by the presence of the arterial stenosis. If stenosis is present in an artery, normal blood flow is disturbed. In the present study, characteristics of steady and pulsatile flow of non-Newtonian fluid, the effects of stenosised geometry are analyzed by numerical simulation. One interesting point is that non-symmetric solutions were obtained at severity stenosis, although the stenosis and the boundary condition were all axisymmetric.

  • PDF