• Title/Summary/Keyword: Helmholtz Frequency

Search Result 132, Processing Time 0.024 seconds

Simulation of underwater echo reduction using miniaturized Helmholtz resonators (소형화된 헬름홀츠 공진기를 이용한 수중 반향음 감소해석 모의실험)

  • Park, SungJun;Kim, Jedo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.67-72
    • /
    • 2019
  • In this study, we investigate the echo reduction performance of miniaturinzed Helmholtz resonators using smaller than wavelength acoustic metamaterial structures. The Helmholtz resonators are formed using air structures which exhibit large impedance mismatch with the surrounding underwater environment. Using the multi-physics software package, we find that significant reduction in the sonar signature is expected and frequency tailoring is possible by controlling the degree of space coiling and inner volume of the resonators. We find that for the basic Helmholtz resonators, up to 7 dB reduction in echo is expected at 10,000 Hz while when the miniaturized Helmoholtz resonators are used, up to 14 dB reduction in echo is expected at 5,000 Hz. In addition, frequency tailoring is demonstrated by varying the internal volume of the Helmholtz resonators and broadband characteristic is shown using superposition of various degree of space coiled structures. Through this study we investigate the effectiveness of the miniaturized Helmholtz resonators formed using air structures and the echo reduction results show promisses in the application of achieving underwater stealth.

Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation (LES기반 연소모델과 Helmholtz 방정식을 이용한 LIMOUSINE 버너의 연소불안정 해석)

  • Shin, Youngjun;Jeon, Sangtae;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.41-46
    • /
    • 2017
  • This study has numerically investigated the flame-acoustics interactions in the turbulent partially premixed flame field. In the present approach, in order to analyze the combustion instability, the present approach has employed the LES-based combustion model as well as the Helmholtz solver. Computations are made for the validation case of the partially premixed LIMOUSINE burner. In terms of the FFT data, numerical results are compared with experimental data. Moreover, Helmholtz equation in frequency domain is solved by combining CFD field data including the flight time from a nozzle to the flame zone. Based on numerical results, the detailed discussions are made for the essential features of the combustion instability encountered in the partially premixed burner.

THE REFLECTION OF SOLUTIONS OF HELMHOLTZ EQUATION AND AN APPLICATION

  • Yun, Ki-Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.427-436
    • /
    • 2001
  • It is the purpose of this paper to study the reflection of solutions of Helmholtz equation with Neumann boundary data. In detail let u be a solution of Helmholtz equation in the exterior of a ball in R$^3$ with exterior Neumann data ∂(sub)νu = 0 on the boundary of the ball. We prove that u can be extended to R$^3$ except the center of the ball. As a corollary, we prove that a sound hard ball can be identified by the scattering amplitude corresponding to a single incident direction and as single frequency.

  • PDF

Dynamic Characteristics of an Unsteady Flow Through a Vortex Tube

  • Kim, Chang-Soo;Sohn, Chang-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2209-2217
    • /
    • 2006
  • Dynamic flow characteristics of a counter-flow vortex tube is investigated using hot-wire and piezoelectric transducer (PZT) measurements. The experimental study is conducted over a range of cold air outlet ratios (Y=0.3, 0.5, 0.7, and 1.0) and inlet pressure 0.15 MPa. Temperatures are measured at the cold air outlet and along the vortex tube wall. Hot-wire is located at cold outlet and PZT is installed at inner vortex tube by mounting at throttle valve. The cold outlet temperature results show that the swirl flow of vortex tube is not axisymmetric. The hot-wire and PZT results show that there exist two distinct kinds of frequency, low frequency periodic fluctuations and high frequency periodic fluctuations. It is found that the low frequency fluctuation is consistent with the Helmholtz frequency and the high frequency fluctuation is strongly related with precession oscillation.

A Study on the Acoustic Absorption Performance of a Helmholtz Resonator (헬름홀츠 공명기의 흡음성능에 관한 연구)

  • Song, Hwa-Young;Lee, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.71-79
    • /
    • 2008
  • A helmholtz resonator has been widely used for the purpose of suppressing the low frequency noises propagated from various heat and fluid machineries. However, the conventional resonator has demerits that the effective absorption bandwidth is narrow and the absorption performance is not so outstanding in the only limited configurations of neck and cavity as well. In order to overcome these problems, in this paper, a resonator with perforated neck is proposed. The absorption performances of the resonator are measured by two-microphone method and estimated by transfer matrix method. The measured values of normal absorption coefficients agree well with the estimated values. By introducing the perforated plates at the neck of a resonator, it is shown that the absorption performance have been significantly improved.

Numerical Simulations of an Unsteady Shock Wave Propagating into a Helmholtz Resonator (Helmholtz 공명기 내부를 전파하는 비정상 충격파의 수치해석)

  • Lee, Y.K.;Gweon, Y.H.;Shin, H.D.;Kim, H.D.;AOKI, T.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1643-1648
    • /
    • 2004
  • When a shock wave propagates into a Helmholtz resonator, very complicated wave phenomena are formed both inside and outside the resonator tube. Shock wave reflection, shock focusing phenomena and shock-vortex interactions cause strong pressure fluctuations inside the resonator, consequently leading to powerful sound emission. In the present study, the wave phenomena inside and outside the Helmholtz resonator are, in detail, investigated with a help of CFD. The Mach number of the incident shock wave is varied below 2.0 and several types of resonators are tested to investigate the influence of resonator geometry on the wave phenomena. A TVD scheme is employed to solve the axisymmetric, compressible, Euler equations. The results obtained show that the configuration of the Helmholtz resonator significantly affects the peak pressure of shock wave focusing, its location, the amplitude of the discharged wave and resonance frequency.

  • PDF

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

Hydraulic Pulsation and Noise Reduction using the Helmholtz Attenuator (헬름홀츠 감쇠기를 응용한 유압시스템의 유압맥동 및 소음 최소화 연구)

  • 김동현;이대옥;최근국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.614-619
    • /
    • 1997
  • The hydraulic pressure pulsation has on the effected on the acoustic nosie and control performance of the hydraulic-servo system. The Helmholtz attenuator introduction on the hydraulic line is an efficient device to reduce the hydraulic pulsation. The salient feature of causing hydraulic pulsation and the frequency characteristics of Helmholtz attenuator are studied. The hydraulic filter design parameters such as the locating position, connecting orifice area and accumulator volume are mathematically analyzed. The instrumental works are carried out with the remarkable reduction of the hydraulic pressure pulsation magnitude and the acoustic noise level.

  • PDF

Effect of Resonator Arrangement on Sound Absorption of Helmholtz Resonator Array Panel (공명기 분포에 따른 공명기 배열형 패널의 흡음특성 고찰)

  • 김상렬;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.288-291
    • /
    • 2004
  • The Helmholtz resonator is one of noise control elements widely used in many practical applications. However the resonator array system, which is sometimes used to reflect or absorb low frequency noise, has not been well studied. We have investigated the difference in sound absorption of the Helmholtz resonator array panel caused by change in the resonator arrangement. Experiments and numerical calculations for various Helmholtz resonator array panels are carried out and the results are compared each other. The comparisons show that the acoustic coupling between closely located resonators affects the performance of the sound absorbing system. Particularly, the distance between resonators has a significant effect on the broadness of the sound absorption coefficient.

  • PDF

External Leakage on Helmholtz Resonators (헬름홀쯔 공명기에서 외부로의 누출)

  • Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.752-758
    • /
    • 2013
  • The effect of external leakage on the acoustic performance of Helmholtz resonators is experimentally and numerically investigated. The transmission loss of the Helmholtz resonator with a circular perforated hole is measured by using an impedance tube setup. The experimental results are then compared with one-dimensional analytical and three-dimensional numerical results. As the size of the hole increases, the peak of the transmission loss shifts to higher frequency, especially for the holes on the cavity. While the transmission loss is almost independent of the location of the hole on the cavity, the impact of the hole location on the neck on the transmission loss is not negligible. The results show that one-dimensional analytical method can predict the overall trends, whereas three-dimensional numerical method is necessary for more accurate predictions.