• Title/Summary/Keyword: Helicopter Mission

Search Result 46, Processing Time 0.022 seconds

Establishing Engine Accelerated Mission Test Cycles complying with the CS-E of European Aviation Safety Agency (유럽항공안전청 형식증명 감항기준에 부합하는 엔진가속시험 사이클 수립)

  • Park, Sooyoul;Moon, Gyeongchan;Koo, Hyuncheol
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.62-67
    • /
    • 2020
  • The European Aviation Safety Agency (EASA) legislates the CS-E (Certification Specification-Engine) for type certification of aircraft engines. According to the CS-E, engine manufacturers (type certificate holders) the need to show compliance of continued airworthiness of an engine during the overhaul, and the Accelerated Mission Test (AMT) is usually accepted as means of compliance. As a part of the Korean Civil Helicopter program, the engine has been developed with foreign manufacturers to achieve the EASA engine type certificate. In this study, the AMT procedure is planned for the engine to be certified by the EASA, and AMT cycles are also established to meet airworthiness requirements of the CS-E in consideration of the engine design and operation characteristics.

Modeling and Simulation for Anti-submarine HVU Escort Mission (대 잠수함 HVU 호위 임무 분석 모델링 및 시뮬레이션)

  • Park, Kang-Moon;Lee, Eun-Bog;Shin, Suk-Hoon;Han, Seungjin;Chi, Sung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.4
    • /
    • pp.75-83
    • /
    • 2014
  • Most warship combat systems inquire human operator to control several sensor and another equipments as well as decision-modeling. For this reason, many researches with multi-agent based M&S (Modeling and Simulation) have been increasingly conducted. However there cannot find any researches of M&S based analysis for anti-submarine warfare that requires a high level of mission complexity between multiple platforms. In this research, we have been developed various combat platform models such as warship, submarine and helicopter, etc. In order to apply the multi-agent-based M&S technology to the anti-submarine warfare i.e. a HVU (High Value Unit) escort mission scenario. Then we have successfully analyzed the measures of effectiveness according to the different tactics and different situations. In future, the defence engineer maybe employ our methodology and tools to analyze actual tactical problem by simply inserting actual data into our agent model.

A Study on Improvement about abnormal display of Multi Function Display for KUH (한국형 기동헬기 다기능시현기의 이상시현 개선에 관한 연구)

  • Kim, Young Mok;Chang, Joong Jin;Jun, Byung Kyu;Kim, Chang Young;Kim, Tae Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.344-350
    • /
    • 2014
  • Multi Function Display(MFD) of Korean Utility Helicopter(KUH) is the component of mission management/display control system and displays image information(navigation, flight, survivability, digital map, maintenance) acquired from Mission Computer(MC) while the aircraft is operated. It is an essential equipment for pilots to perform flight mission and it has functions of display scene control, data display, built in test(BIT) and brightness control. In this paper, it is analyzed the cause of abnormal display(flickering) on MFD and summarized the design changes to solve the defect. It is also described system safety analysis and suggested verification results of flight/ground test.

Proximal Policy Optimization Reinforcement Learning based Optimal Path Planning Study of Surion Agent against Enemy Air Defense Threats (근접 정책 최적화 기반의 적 대공 방어 위협하 수리온 에이전트의 최적 기동경로 도출 연구)

  • Jae-Hwan Kim;Jong-Hwan Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • The Korean Helicopter Development Program has successfully introduced the Surion helicopter, a versatile multi-domain operational aircraft that replaces the aging UH-1 and 500MD helicopters. Specifically designed for maneuverability, the Surion plays a crucial role in low-altitude tactical maneuvers for personnel transportation and specific missions, emphasizing the helicopter's survivability. Despite the significance of its low-altitude tactical maneuver capability, there is a notable gap in research focusing on multi-mission tactical maneuvers that consider the risk factors associated with deploying the Surion in the presence of enemy air defenses. This study addresses this gap by exploring a method to enhance the Surion's low-altitude maneuvering paths, incorporating information about enemy air defenses. Leveraging the Proximal Policy Optimization (PPO) algorithm, a reinforcement learning-based approach, the research aims to optimize the helicopter's path planning. Visualized experiments were conducted using a Surion model implemented in the Unity environment and ML-Agents library. The proposed method resulted in a rapid and stable policy convergence for generating optimal maneuvering paths for the Surion. The experiments, based on two key criteria, "operation time" and "minimum damage," revealed distinct optimal paths. This divergence suggests the potential for effective tactical maneuvers in low-altitude situations, considering the risk factors associated with enemy air defenses. Importantly, the Surion's capability for remote control in all directions enhances its adaptability in complex operational environments.

A Study on Visual Servoing Image Information for Stabilization of Line-of-Sight of Unmanned Helicopter (무인헬기의 시선안정화를 위한 시각제어용 영상정보에 관한 연구)

  • 신준영;이현정;이민철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.600-603
    • /
    • 2004
  • UAV (Unmanned Aerial Vehicle) is an aerial vehicle that can accomplish the mission without pilot. UAV was developed for a military purpose such as a reconnaissance in an early stage. Nowadays usage of UAV expands into a various field of civil industry such as a drawing a map, broadcasting, observation of environment. These UAV, need vision system to offer accurate information to person who manages on ground and to control the UAV itself. Especially LOS(Line-of-Sight) system wants to precisely control direction of system which wants to tracking object using vision sensor like an CCD camera, so it is very important in vision system. In this paper, we propose a method to recognize object from image which is acquired from camera mounted on gimbals and offer information of displacement between center of monitor and center of object.

  • PDF

Development of Conceptual Design Methodology and Initial Sizing for Tip-Jet Gyroplane (Tip-jet gyroplane 개념설계 기법 개발 및 사이징)

  • Lee, Donguk;Lim, Daejin;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.452-463
    • /
    • 2018
  • Tip-jet gyroplane is a type of compound helicopter that employs the tip-jet system to rotate the rotor by a reaction force from the gas jetted at the rotor tips in hovering. In forward flight, tip-jet gyroplane converts into a form of a gyroplane. Therefore, it is necessary to develop a new conceptual design method to consider three flight modes: tip-jet mode, gyroplane mode, and transient mode. This study developed the numerical code of conceptual design methodology that can consider three flight modes. The developed code was validated against the available experiment data. Based on the developed code, initial sizing of tip-jet gyroplane was performed for two mission profiles including high speed forward flight of 150knots with a mission range of 300km or 400km. Subsequently, the configuration and performance of the 3,000lb tip-jet gyroplane were analyzed.

Construction of Optimal Anti-submarine Search Patterns for the Anti-submarine Ships Cooperating with Helicopters based on Simulation Method (대잠 헬기와의 협동 작전을 고려한 수상함의 최적 대잠탐색 패턴 산출을 위한 시뮬레이션)

  • Yu, Chan-Woo;Park, Sung-Woon
    • Journal of the Korea Society for Simulation
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 2014
  • In this paper we analyzed the search patterns for the anti-submarine warfare (ASW) surface ships cooperating with ASW helicopters. For this purpose, we modeled evasive motion of a submarine with a probabilistic method. And maneuvers and search actions of ships and helicopters participating in the anti-submarine search mission are designed. And for each simulation scenario, the case where a ship and a helicopter searches a submarine independently according to its optimized search pattern is compared with the case where the search platforms participate in the ASW mission cooperatively. Based on the simulation results, we proposed the reconfigured search patterns that help cooperative ASW surface ships increase the total cumulative detection probability (CDP).

The Localization Development for Korean Utility Helicopter's On-Board Inert Gas Generation System (한국형 기동헬기 불활성가스발생장치 국산화 개발)

  • Ahn, Jong-Moo;Lee, Hee-Rang;Kang, Tae-Woo;Choi, Jae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.662-669
    • /
    • 2017
  • Military rotary aircraft are heavily exposed to projectile environments due to their mission characteristics, and fires caused by fuel leaks after shooting are linked directly to the loss of human life. To improve the survivability of pilots and crews, the fuel tank in rotary aircraft must have gunfire resistance and anti-explosion characteristics. Gunfire resistance can be satisfied by applying a self-sealing cell to a fuel tank. Anti-explosion can be satisfied by reducing the oxygen concentration in an explosive area and suppressing the generation of combustible fuel vapor by minimizing the evaporation rate of the fuel by heat. A Korean utility helicopter applies anon-board inert gas generation system to meet the anti-explosion requirements for ballistic impact. The generator fills the fuel tank with an inert gas and reduces the oxygen concentration. This paper describes the overall development process of the OBIGGS developed in accordance with the localization process of weapon components. OBIGGS was developed/manufactured through domestic technology, and the performance was found to be equal to or better than that of the existing products through single performance tests and aircraft mounting tests.

The Effect of the Non-Technical Skills on the Rotorcraft Flight Safety (NOTECHS이 안전운항(安全運航)에 미치는 영향(影響))

  • Lee, Sangmin;Kim, Chilyoung;Hwang, Sasik
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.27-40
    • /
    • 2013
  • Rotorcraft operating in the domestic aviation safety techniques are applied CRM training is conducted but, aircraft accidents caused by human factors has not shown a declining trend. Thus, knowledge of aviation safety and human factors for the spread of awareness of improved rotorcraft flight operations department managers to understand the complexity of nature and culture, and to perform high-risk mission helicopter pilot study of local activation and enhance safety awareness research was conducted in order to. In this study, the development direction of CRM training studies in order to identify the leading NOTECHS (Non-Technical Skills; non-technical pilot skills) of the four categories as the independent variable and the dependent variable corresponding to the resulting effect on the key variables awareness of the differences were studied. In addition, the direction and strength of the relationship were analyzed to determine the relationship of each independent variable to assess the impact on the dependent variable regression analysis was performed. Pilot training and evaluation of non-technical skills related to the teaching reflected in the CRM training and assessment must be carried out with 5 star rating scale was preferred. Therefore, to meet our country rotorcraft operating environment 'NOTECHS' aviation safety by developing training programs reflected in the educational process, implementation, and periodic training and assessment is done in future research on this analysis and feedback is done to reflect the specific performance expect.

A Study on Winter Season Usability Performance Improvement of Flapper Valve for KUH-1 (한국형 기동헬기 동계운용능력 향상을 위한 플래퍼밸브 개선연구)

  • Choi, Jae Hyung;Chang, In ki;Shim, Dai Sung;Ahn, Jeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • Flapper Valve of Korean Utility Helicopter(KUH-1) is an essential equipment in Environmental Control System(ECS) for pilot to perform flight mission. It provides pilots and crews with heating, ventilating and air conditioning. It has function of maintaining room temperature to sustain operational capability for pilot and crew. This paper summarizes pilot comments in flight test which are classified by cause of occurrence and the troubleshooting process about each comment. It also describes design improvements which was derived from troubleshooting and suggests verification results of flight test at low temperature.