• Title/Summary/Keyword: Height of Building

Search Result 1,090, Processing Time 0.036 seconds

A Study on the Preservation and Management Technique of Urban Skylines (도시 스카이라인 보존.관리 기법에 관한 연구(II))

  • 임승빈;박창석;김성준
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.22 no.3
    • /
    • pp.105-120
    • /
    • 1994
  • The major purpose of this study is to suggest a comprehensive and systematic process for the preservation and management of urban skylines. The city of Seoul has been selected as a case study for this process. The results of this study are summarized as follows; 1) An urban landscape masterplan needs to be established before the preparation of the preservation and management plan for urban skylines. 2) Preservation and management plans for urban skylines are suggested in the case Mt. Nam, Han River, Mt. Kwanak in Seoul city. In the case of Mt. Nam and Mt. Kwanak, the control of building heights and guidelines for building height have been studied. For the Han River, various alternatives in building height and disposition have been investigated for the enhancement of the visual quality. 3) Two major steps are suggested for the effective preservation and management of urban skylines. The first step is to prepare an urban landscape masterplan for the whole city, to delineate the skyline preservation area, and to fix controls on building heights in the area. The second step is to divide the whole city into landscape units, to make detailed landscape masterplan for each the units, and to fix controls on building heights in the units. However, only the first step will be necessary in a small city.

  • PDF

Calculation of Reasonable Equivalent Uniform Pressure Height and Lateral Earth Pressure Characteristics of Retaining Structures (옹벽에 작용하는 수평토압 특성 분석 및 합리적인 등가상재하중 높이 산정)

  • Lee, Kicheol;Chung, Moon-Kyung;Seo, Seunghwan;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.139-149
    • /
    • 2019
  • For retaining wall designs, horizontal earth pressure induced by traffic loads over the walls is calculated based on equivalent uniform pressure height. The AASHTO LRFD design standards propose equivalent uniform pressure height of traffic loads; however, the equivalent uniform pressure height is calibrated using the US standard trucks. As the domestic standard trucks are different from the US standard trucks, in this study, new domestic equivalent uniform pressure height is proposed using the Boussinesq theory varying vehicle directions, Poisson's ratios of pavement layers, and retaining wall height. The proposed equivalent uniform pressure heights are generally higher than those proposed by the AASHTO design standards because the axle loads and their densities of two domestic standard trucks are higher than those of the US standard trucks. The most highest equivalent uniform pressure height was found for traffic direction perpendicular to longitudinal direction of retaining wall.

Estimation of wind power generation of micro wind turbine on the roof of high rise buildings in urban area (도심 고층건물 지붕에서의 소형 풍력발전기 발전량 예측)

  • Choi, Hyung-Sik;Chang, Ho-Nam
    • New & Renewable Energy
    • /
    • v.5 no.4
    • /
    • pp.21-27
    • /
    • 2009
  • Potential yield of micro wind turbine on the roof of urban high rise buildings is estimated. Urban wind profile is modeled as logarithmic profile above the mean building height with roughness length 0.8, displacement 7.5 m. Mean wind velocity from the meteorological agency data at the hight of 50m is used. Wind velocity changes are simulated on the rectangular roof of 26, 45, 53 degree pitch and the circular roof by computational fluid dynamics and RNG k-$\varepsilon$ turbulence models. Wind velocity increased approximately by a factor of the order of 270 % on the 26 degree pitched roof. In the 100 m and 200 m high buildings, wind enhancement is greater at the front side than at the center of the building. In the building arrangement model wind velocity changes abruptly and it becomes wind gusts. When commercial wind turbines are installed on the building roof, average power and annual power generation enhanced by 3~4 times than normal wind velocity at 50m and 6 kw wind turbine can generate 1053 kwh per month on the 26 degree pitched roof at 50m height and sufficiently supply electrical power with 15 household for common electrical use and food waste disposer. However, power output will vary significantly by the wind conditions in the order of $\pm$ 20 %.

  • PDF

Simplified elastic design checks for torsionally balanced and unbalanced low-medium rise buildings in lower seismicity regions

  • Lam, Nelson T.K.;Wilson, John L.;Lumantarna, Elisa
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.741-777
    • /
    • 2016
  • A simplified approach of assessing torsionally balanced (TB) and torsionally unbalanced (TU) low-medium rise buildings of up to 30 m in height is presented in this paper for regions of low-to-moderate seismicity. The Generalised Force Method of Analysis for TB buildings which is illustrated in the early part of the paper involves calculation of the deflection profile of the building in a 2D analysis in order that a capacity diagram can be constructed to intercept with the acceleration-displacement response spectrum diagram representing seismic actions. This approach of calculation on the planar model of a building which involves applying lateral forces to the building (waiving away the need of a dynamic analysis and yet obtaining similar results) has been adapted for determining the deflection behaviour of a TU building in the later part of the paper. Another key original contribution to knowledge is taking into account the strong dependence of the torsional response behaviour of the building on the periodic properties of the applied excitations in relation to the natural periods of vibration of the building. Many of the trends presented are not reflected in provisions of major codes of practices for the seismic design of buildings. The deflection behaviour of the building in response to displacement controlled (DC) excitations is in stark contrast to behaviour in acceleration controlled (AC), or velocity controlled (VC), conditions, and is much easier to generalise. Although DC conditions are rare with buildings not exceeding 30 m in height displacement estimates based on such conditions can be taken as upper bound estimates in order that a conservative prediction of the displacement profile at the edge of a TU building can be obtained conveniently by the use of a constant amplification factor to scale results from planar analysis.

Historical Review on High-rise Buildings-promoting Policies on the Main Roads of Seoul for Urban Beautification from the 1950s to the 1970s (1950-1970년대 도시미화를 위한 서울 간선도로변 고층화제도의 사적 고찰)

  • Park, Ilhyang;Jeon, BongHee
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.10
    • /
    • pp.41-52
    • /
    • 2019
  • The purpose of this study was to analyze the historical development of high-rise buildings-promoting policies in Seoul in terms of modern urban redevelopment. The results of this study were as follows; The maximum height of the buildings has been limited by National codes since 1934. But at the same time, Seoul Metropolitan government had limited the minimum building floors of roadside buildings through local regulations after the Korean War. The high-rise city had been regarded as a means of beautifying Seoul for a long time. However since the 2000s, the minimum height limit for buildings was removed from local regulations and the concept of high-rise restrictions was no longer significant as before.

A Study on Development of the Secondary Reverse Vortex in Building Canyon (건물협곡에서의 2차 역회전 소용돌이 형성에 관한 연구)

  • Son, Minu;Kim, Do-Yong
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.528-535
    • /
    • 2018
  • In this study, the effect of obstacle aspect ratio on vortex in building canyon was numerically investigated using a computational fluid dynamics(CFD) model. The sensitivity experiments were performed in the cases of increasing building length(L) and height(H) by the width(W) of building canyon. The wind vector fields and secondary reverse vortex in building canyon were discussed in this study. For the horizontal vortex, the vortex zone increased as the building length increases, but the vectors at the middle of building canyon began to change in the case of L/W=2.5. In the case of L/W=3.0, the smaller primary vortex was presented with the secondary reverse vortex. For the vertical vortex, the vortex zone increased as the building height increases, but the direction of vectors at the bottom of building canyon began to change in the case of H/W=2.5. In the case of H/W=3.5, the smaller primary vortex was presented with the secondary reverse vortex.

Method of the Calibration of earthquake Ground Motions for Seismic Design (내진설계를 위한 지진 입력하중 조정 방법)

  • 공도환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.20-27
    • /
    • 1998
  • In the current seismic design codes design earthquake is usually defined as the earthquake with the 90 percent probability of not being exceeded in the life time of a structure which is assumed as 50 years equivalent to the earthquake with 475 year recurrence period. However the life time of tall building structures may be much longer than 50 yers. The current seismic design code requires the modal analysis or dynamic time history analysis for the buildings with the height exceeding a certain height limit. The objective of this study is to collect the earthquake ground motion(EQGM) which can be used for dynamic time history analysis for tall buildings. For this purpose linear elastic design response spectrum (LEDRS) in the code is scaled to account for the recurrence period of the design earthquake. The earthquake ground motions which has been recorded are calibrated to fit the scaled LEDRS. The set of calibrated EQGM can be treated as design EQGM for the design of tall building with longer lifetime than ordinary building.

  • PDF

A Sutdy on the Pressure Distribution Characteristic of High-rise Buildings in Fire Using Computer Simulation (시뮬레이션을 이용한 화재 시 고층건축물의 압력분포 특성에 관한 연구)

  • Kim, Hye-Won;Lee, Byeong-Heun;Jin, Seung-Hyeon;Kwon, Young Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.49-50
    • /
    • 2019
  • In the case of High-rise buildings, it has a problem by stack effect that rise of vertical height. Especially in case of fire, it need to the consideration of stack effect that it has bigger than general. Therefore in this study, we used to the Contamw and FDS simulation for analysis of stack effect and pressure distribution characteristic in fire. As a result the Contamw simulation shows the pressure distribution by stack effect in general high-rise buildings. However, in case of fire, the height of the neutral plane is lowered and stack effect is larger. Therefore, it is necessary to multiply analyze the temperature distribution and the stack effect in fire.

  • PDF

A Building Heating and Cooling Load Analysis of Super Tall Building considering the Vertical Micro-climate Change (초고층 오피스 건물의 수직외부환경 변화가 건물부하에 미치는 영향)

  • Kim, Yang-su;Song, Doosam;Hwang, Suk-Ho
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2010
  • In these days numerous super tall buildings are under construction or being planned in Middle East and Asian countries. Some of them are planned as an ultra high-rise building that goes over 600m tall, including Burj Khalifa, the tallest building in the world. External environment such as wind speed, temperature and humidity of the super tall building varies due to its vertical height. Therefore, it is necessary to consider these environmental changes to estimate building heating and cooling load. This paper analyzes how vertical microclimate difference affects building heating and cooling load in super tall building by simulation using radiosonde climate data. Besides, the correlation between air-tightness of building envelope and building load was analyzed for a super tall building.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.