• Title/Summary/Keyword: Hec-RAS

Search Result 342, Processing Time 0.031 seconds

1D Numerical Model for Rivers Flows with Emergent Vegetations on Floodplains and Banks (정수식생이 존재하는 자연하도에서 1차원 수치모형)

  • Song, Ju-Il;Kim, Jong-Woo;Rim, Chang-Soo;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.9-22
    • /
    • 2011
  • A 1D numerical model for steady flow, based on the energy equation, was developed for natural rivers with emergent vegetations on floodplains and banks. The friction slope was determined by the friction law of Darcy-Weisbach. The composite friction factor of the each cross section was calculated by considering bottom roughness of the main channel and the floodplains, the flow resistance of vegetations, the apparent shear stress and the flow resistance caused by the momentum transfer between vegetated areas and non-vegetated areas. The interface friction factor caused by flow interaction was calculated by empirical formulas of Mertens and Nuding. In order to verify the accuracy of the suggested model, water surface elevations were calculated by using imaginary compound channels and the results of calculations were compared with that of the HEC-RAS. The sensitivity analysis was performed to confirm changed friction factors by vegetations density etc. The suggested model was applied to the reach of the Enz River in Germany, and estimated water surface elevations of the Enz River were compared with measured water surface elevations. This model could acceptably compute not only water surface elevations with low discharge but also that with high discharge. So, the suggested model in this study verified the applicability in natural rivers with emergent vegetations.

An Automated Flood Risk Mapping Algorithm using GIS-based Techniques considering Characteristics of Jeju streams (제주하천 특성 고려 GIS 기반 홍수범람위험도 자동화 알로리즘)

  • Kim, Dongsu;Kim, Taeeun;Son, Geunsoo;You, Hojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.634-634
    • /
    • 2015
  • 최근 국지성 호우와 잦은 태풍으로 인한 돌발홍수가 빈번하게 발생하여 도심지에서의 호안유실과 범람으로 많은 외수침수의 피해가 발생하고 있다. 또한 기후변화에 따른 강우량의 증가와 집중호우로 인한 홍수 피해는 지속적으로 증가할 것으로 예상됨에 따라 대하천 유역을 중심으로 홍수범람예측 연구가 활발히 진행되고 있지만 대하천을 제외한 지방 중소하천의 연구가 미비한 실정이다. 이에 본 연구에서는 지방 중소하천 중 태풍과 집중호우의 영향이 많은 제주지역의 주요 하천 중의 하나인 한천 유역을 테스트베드로 선정하여 연구를 진행하였다. 한천은 강우 시에만 유출이 발생하는 건천으로, 집중호우 시 암반하상 조건, 복개, 교각 등으로 수위가 국부적으로 급격히 상승하는 경우가 있었다. 그리고 한천 하류부에는 도심이 위치하고 있어 돌발홍수 발생 시 막대한 피해가 발생한다. 이에 따라 홍수 피해를 줄이기 위한 제도화, 정책결정 등의 구조적 해결방안과 홍수 피해의 규모와 원인을 분석하는 비구조적 해결방안에 대한 연구가 시급하다. 따라서 본 연구에서는 홍수범람 등으로 인한 홍수 피해규모를 산정하여 각 정부부처 및 유관기관, 지자체에서 빠른 정책결정을 내릴 수 있는 자료를 제공하는 목적으로 제주도의 특성을 고려한 홍수범람위험도 산정 알고리즘을 개발하고자 한다. 본 연구에서는 제주 한천유역의 단면 자료와 빈도별 홍수량 자료를 이용하여 HEC-RAS 모형으로 수리학적 흐름특성 모의를 실사하였다. 모의된 결과를 바탕으로 ArcGIS 소프트웨어인 ESRI사의 ArcMap을 이용하여 빈도별 홍수위 자료와 제주지역 수치표고모형 자료를 활용한 빈도별 홍수범람지도를 산정하고, 좌안과 우안의 제방고로부터 위험도를 산정하여 홍수범람위험도를 각각 구축하였다. 구축된 결과를 이용하여 분석하고자하는 해당 빈도의 홍수위와 홍수량이 발생할 때의 피해지역을 예측하였으며, 예측된 지역과 제주시의 공시지가 자료를 중첩하여 피해지역에 대한 피해액을 산정하였다. 본 연구의 알고리즘을 적용한 2007년 태풍 '나리' 사상의 경우와 비교한 결과, '나리' 사상의 침수 흔적도와 유사한 홍수범람지도를 획득 할 수 있었으며, 모의된 유역의 하천 복개구간을 중심으로 홍수범람이 발생한다는 점과 우안보다 좌안에서의 홍수범람위험도와 피해액이 더 크게 나타난 점 등의 홍수범람 특성을 파악할 수 있었다. 본 연구에서 제시된 기법을 이용할 경우, 홍수에 의한 취약지에 대한 제방 설계 강화, 하천의 보수 정비 등 정책적 결정에 사용될 수 있을 것이며, 실시간 자료제공, 재해정보시스템 등에 적용하여 홍수범람 피해를 줄일 수 있는 기반기술이 될 것으로 사료된다.

  • PDF

Improvement of Cross-section Estimation Method for Flood Stage Analysis in Unmeasured Streams (미계측 하천의 홍수위 해석을 위한 단면 추정 기법 개선)

  • Jun, Sang Min;Hwang, Soon Ho;Song, Jung-Hun;Kim, Si Nae;Choi, Soon-Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.11-22
    • /
    • 2019
  • The objective of this study was to improve the cross-sectional area and height estimation method using stream width. Stream water levels should be calculated together to simulate inundation of agricultural land. However, cross-sectional survey data of small rural rivers are insufficient. The previous study has developed regression equations between the width and the cross-sectional area and between the width and the height of stream cross-section, but can not be applied to a wide range of stream widths. In this study, cross-sectional survey data of 6 streams (Doowol, Chungmi, Jiseok, Gam, Wonpyeong, and Bokha stream) were collected and divided into upstream, midstream and downstream considering the locations of cross-sections. The regression equations were estimated using the complete data. $R^2$ between the stream width and cross-sectional area was 0.96, and $R^2$ between width and height was 0.81. The regression equations were also estimated using divided data for upstream, midstream and downstream considering the locations of cross-sections. The range of $R^2$ between the stream width and cross-sectional area was 0.86 - 0.91, and the range of $R^2$ between width and height was 0.79 ? 0.92. As a result of estimating the cross-sections of 6 rivers using the regression equations, the regression equations considering the locations of cross-sections showed better performance both in the cross-sectional area and height estimation than the regression equations estimated using the complete data. Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the flood stage analysis of the estimated and the measured cross-sections for 50-year, 100-year, and 200-year frequency floods. As a result of flood stage analysis, the regression equations considering the locations of cross-sections also showed better performance than the regression equations estimated using the complete data. Future research would be needed to consider the factors affecting the cross-sectional shape such as river slope and average flow velocity. This study can be useful for inundation simulation of agricultural land adjacent to an unmeasured stream.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

Determination of Floodplain Restoration Area Based on Old Maps and Analysis on Flood Storage Effects of Flood Mitigation Sections (고지도를 활용한 홍수터 복원 구역 선정 및 홍수완충공간의 홍수 저류효과 분석)

  • Dong-jin Lee;Un Ji;Sanghyuk Kim;Hong-Kyu Ahn;Eun-kyung Jang
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.40-49
    • /
    • 2023
  • To reduce the damage of extreme flooding caused by climate change and to create flood mitigation sections in a nature-friendly riparian area, it is necessary to restore the floodplain area by referring to the past floodplain section of the current inland waterfront area before the levee was built. This study proposed a method of selecting a location for floodplain restoration using old maps of the Geum River study section and analyzed the effect of flood level reduction through unsteady flow numerical simulations using the floodplain as a flood mitigation space. As a result of analyzing changes in the river areas using old maps, the river section was estimated to gradually reduce by 27.8% (1,059,380 m2) in 2020 compared to 1919, and it was found to have an effective storage capacity of 2,200,868 m3 when restored to offline storage. The flood level and discharge control effects analyzed based on HEC-RAS unsteady flow simulation were 16 cm and 219.01 m3/s, respectively, in the downstream cross-section. In the numerical simulation in this paper, the flood mitigation space was applied as an offline reservoir. The effect of reducing the flood level may differ if levee retreat/relocation is applied.

Numerical simulation of flood water level in a small mountain stream considering cross-section blocking and riverbed changes - A case study of Shingwangcheon stream in Pohang before and after Typhoon Hinnamnor flood (단면 폐색과 하상 변화를 고려한 산지 중소하천의 홍수위 수치모의 - 태풍 힌남노 전후의 포항 신광천을 사례로 -)

  • Lee, Chanjoo;Jang, Eun-kyung;Ahn, Sunggi;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.837-844
    • /
    • 2023
  • Small and medium-sized mountain rivers that flow through steep, confined valleys carry large amounts of coarse-grained sediment and woody debris during floods. It causes an increase in flood water level by aggrading the riverbed and the cross-section blockage due to driftwood accumulation during flooding. However, the existing flood level calculation in the river basic plan does not consider these changes. In this study, using the Typhoon Hinnamnor flood in September 2022 as an example, we performed numerical simulations using the HEC-RAS model, taking into account the blockage of a cross-section at the bridge and changes in riverbed elevation that occurred during floods, and analyzed the flood level to predict flood risk. This study's results show that flooding occurs if more than 30% of the cross-section is blocked. The rise of flood water levels corresponds to that of the riverbed due to sediment deposition. These results can be used as basic data to prevent and effectively manage flood damage and contribute to establishing flood defense measures that consider actual phenomena.

Development of the Hydraulic Performance Graph Model and its Application (수리거동곡선 모형의 개발 및 적용)

  • Seo, Yongwon;Seo, Il Won;Shin, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1373-1382
    • /
    • 2014
  • This paper presents a hydraulic performance graph model in which the flow carrying capacity of a channel system was determined by accounting the interacting backwater effect among channel reaches and incoming lateral flow. The method utilizes hydraulic performance graphs (HPGs), and the method is applied to a natural channel Nakdong River to examine its applicability. This research shows that estimation results using HPG are close to records from the stage station and the results from a widely-accepted model, HEC-RAS. Assuming that a water level gage site is ungaged, water level estimations by HPGs compared with observation show that with a flood event, the HPGs underestimate in the water level ascension phase, but in the recession phase they overestimate results. The accuracy of estimation with HPGs was greatly improved by considering the time difference of flooding between the observation and estimation locations.

Primary Study for Ecologic Stream Development in Daejeon (대전광역시 생태하천 조성을 위한 기초연구)

  • Lee, Beum-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.467-471
    • /
    • 2006
  • At the current of the time, the ecologic stream is the most important concern of all the country. Daejeon metropolitan city performing the plan to secure the Daejeon cheon (stream) instream water as the 1st stage of the ecologic stream development plan for the Daejeon 3 main stream. During the performing the plan to secure the Daejeon cheon (stream) instream water, the water sources are decided to supply from Yudeng cheon and Daecheong Dam by the various water sources evaluation. For the investigation of flow and quality of instream water, I applicate the HEC-RAS and QUAL2EU. Instream water is proposed as the $10{\sim}30cm$ water depth and 2 degree water quality (lower the BOD 2.0 ppm) by the report of city. It is reasonable to the water depth objective, but the water quality objective is not reasonable because of the seasonal quality changes of supplied water. I suggest that the basin management plan include the non-point source elimination must comprised to the Daejeon ecologic stream project.

  • PDF

Flood Stage Analysis and Prediction of River Bed Change for Stream Corridor Restoration Model with River Vegetation (하천식생 복원모형의 홍수위 분석과 하상변동 예측)

  • Song, Joong-Geun;Kim, Byeong-Chan;Lee, Jong-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.437-441
    • /
    • 2009
  • The modern times is as special as from the river, the river is very important of our life. The importance to preserve the river environment has been issued and the river developing method is being changed to use potential function of nature as well as flood control. Essential element of the river restoration is a vegetation. The flow resistance by vegetation along the river banks is greatly increase the flood stage. Therefore, the flow resistance due to vegetation in the river and roughness coefficient changes to understand the hydraulic characteristics is an important elements in the river restoration. The purpose of this study is to analyze the flood stage and the aspects of riverbed changes due to the corridor restoration with river vegetation. In order to simulate the flood stage and riverbed changes, HEC-RAS, RMA-2, and SED-2D model were applied for the upstream and downstream in study reaches, respectively.

  • PDF

Analysis of the flood alleviation effect by the gate control of washland (천변 저류지 수문운영에 따른 홍수저감효과 분석)

  • Park, Jung-Heu;Park, Cheong-Hoon;Ryu, Kwan-Hyung;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.31-31
    • /
    • 2011
  • 해마다 반복되는 수해를 대비하여 배수펌프장을 설치하고, 취수보를 철거하는 방법으로 수해예방시스템을 고도화 시키고 있지만, 증가하는 홍수량에 대한 대비책으로는 역부족이다. 따라서, 홍수 피해에 대한 선제적 대응방안으로 강변저류지를 설치하여 상습 침수구역에 대한 대비가 진행되고 있다. 강변저류지 설치를 통해 유역의 홍수량을 분담하고 인접지역의 침수피해를 예방하는 역할을 기대할 수 있다. 국내에서도 영월군의 상습침수구역에 대한 대비책 중 하나로 국토해양부 및 강원도가 함께 영월강변저류지 조성공사를 추진하고 있다. 영월군은 지난 2002년과 2003년에 태풍 '루사'와 '매미'로 인해 심각한 피해를 입었으며, 2006년 집중호우시에도 현재 저류지 예정지역인 방절리 일대와 영월읍 시가지, 북쌍리 등이 대규모로 침수피해를 입은 바 있다. 해당 저류지의 총 넓이는 68만 8천 $m^2$로 물 290만 $m^3$을 가두어 둘 수 있는 규모이다. 하지만, 영월 강변저류지의 저류용량이 290만 $m^3$에 불과해 홍수예방 효과가 미흡하다는 지적이 잇따르고 있다. 따라서, 적절한 수문운영을 통해 홍수저감량과 저류효과를 증대시키는 홍수예방 방안을 제안하고자 한다. 본 연구에서는 유전알고리즘의 적용을 통하여 강변저류지에 설치된 수문의 운영 방법을 개선함으로써 홍수저감량을 최대화하고자 하였다. 수리 수문학적 모형인 HEC-RAS, HEC-I 모형을 연계 운용하여 평창강 유역을 대상으로 수문분석, 홍수유출량 분석, 하류 하천의 홍수영향 분석 결과를 도출하였다. 강변저류지 설치로 인하여 저류지 직하류부를 기준으로 약 $131\;m^3/s$의 첨두홍수량 저감 효과가 발생하는 것으로 검토되었지만, 본 연구에서 제안된 최적화 기법이 적용된 수문운영 방법을 병행하여 운영한다면 추가적으로 $24\;m^3/s$를 저감하는 효과를 얻을 수 있다. 효율적으로 저류지를 운영하여 홍수피해를 사전에 방지하고 나아가 다른 저류지 유역에도 본 연구를 적용하여 홍수피해를 줄이고 합리적으로 용수를 이용하는데 기여할 수 있을 것으로 사료된다.

  • PDF