DOI QR코드

DOI QR Code

1D Numerical Model for Rivers Flows with Emergent Vegetations on Floodplains and Banks

정수식생이 존재하는 자연하도에서 1차원 수치모형

  • Received : 2010.07.19
  • Accepted : 2010.12.23
  • Published : 2011.01.31

Abstract

A 1D numerical model for steady flow, based on the energy equation, was developed for natural rivers with emergent vegetations on floodplains and banks. The friction slope was determined by the friction law of Darcy-Weisbach. The composite friction factor of the each cross section was calculated by considering bottom roughness of the main channel and the floodplains, the flow resistance of vegetations, the apparent shear stress and the flow resistance caused by the momentum transfer between vegetated areas and non-vegetated areas. The interface friction factor caused by flow interaction was calculated by empirical formulas of Mertens and Nuding. In order to verify the accuracy of the suggested model, water surface elevations were calculated by using imaginary compound channels and the results of calculations were compared with that of the HEC-RAS. The sensitivity analysis was performed to confirm changed friction factors by vegetations density etc. The suggested model was applied to the reach of the Enz River in Germany, and estimated water surface elevations of the Enz River were compared with measured water surface elevations. This model could acceptably compute not only water surface elevations with low discharge but also that with high discharge. So, the suggested model in this study verified the applicability in natural rivers with emergent vegetations.

본 연구에서는 에너지 방정식에 기초하여 정수 식생이 존재하는 자연하도에 적용 가능한 1차원 수치모형을 제시하였다. 수위계산을 위한 마찰경사는 Darcy-Weisbach의 마찰식에 의해 계산되었다. 각 단면의 전체 Darcy-Weisbach 마찰계수는 하상조도높이, 식생, 식생구역과 비식생구역 사이의 전단저항, 그리고 홍수터와 주수로의 경계면 전단저항을 고려하여 산정하였다. 경계면 마찰계수는 Mertens방법과 Nuding방법에 의해 계산되었다. 제시된 모형을 가상하도에 적용하고 HEC-RAS모형 모의결과와 비교, 검증하였고, 식생밀도 등에 대하여 마찰계수의 민감도 분석을 실시하였다. 모형의 적용성검토를 위하여 독일 Enz강 일부구간을 대상으로 수치모의를 실시하고 실측수위와 비교하였다. 식생이 존재하는 Enz강의 실측수위와 계산수위를 비교한 결과 식생의 영향을 거의 받지 않고 주수로에 흐름이 형성되는 저유량의 경우와 식생의 영향을 지배적으로 받는 고유량 흐름 모두에서 합리적인 수위를 예측하여 제시된 모형의 적용 가능성을 확인하였다.

Keywords

References

  1. 강형식, 최성욱 (2007). “전단면 식생된 개수로 흐름에서 주흐름방향 渦구조의 수치모의.” 대한토목학회논문집, 대한토목학회, 제27권, 제3-B호, pp. 289-299.
  2. 국토해양부, 환경부 (2008). 친환경 하천관리에 관한 통합지침.
  3. 권기원, 최성욱 (2000). “식생된 개수로 흐름의 k-$\varepsilon$ 난류해석.” 대한토목학회논문집, 대한토목학회, 제20권, 제1-B호, pp. 11-21.
  4. 김 원(2009). 이코리버21 2차년도 개발기술 요약서, ECORIVER21 자연과 함께하는 하천복원 기술개발 연구단.
  5. 박문형 (2010). “복단면 개수로흐름에서 홍수터 식생의 흐름저항을 반영한 1차원 모형.” 한국수자원학회 논문집, 한국수자원학회, 제43권, 제6호, pp. 517-524 https://doi.org/10.3741/JKWRA.2010.43.6.517
  6. 송재우, 박성식 (2004). “식생수로와 비식생수로에서의 조도특성 및 유속분포.” 대한토목학회논문집, 대한토목학회, 제24권, 제6B호, pp. 545-552.
  7. 여홍구, 박문형, 강준구, 김태욱 (2004). “개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰.” 한국환경복원녹화기술학회논문집, 한국환경복원녹화기술학회, 제7권, 제6호, pp. 61-74.
  8. 윤세의, 정재욱, 김원화, 김환국 (1997). “수목이 있는 하도에서의 수위 예측.” 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 69-74.
  9. 윤태훈, 신용진, 이지송 (2002). “수초영역으로 인한 개수로 흐름변화.” 대한토목학회논문집, 대한토목학회, 제22권, 제2B호, pp. 143-149.
  10. 이동섭, 우효섭, 권보애, 안홍규 (2006). “식생 조도계수 산정을 위한 선별된 식생에 관한 실험 연구.” 한국수자원학회 학술발표회논문집, 한국수자원학회, pp. 1291-1294.
  11. 이준호 (2006). 하천식생에 의한 수리특성 변화 분석. 박사학위 논문, 경기대학교. pp. 40-45.
  12. 조홍제, 최현근, 이태영 (2002). “도시하천의 둔치내 식생의 평면적 분포에 따른 홍수위 변화의 실험적 연구.” 한국수자원학회 논문집, 한국수자원학회, 제35권, 제2호, pp. 203-212. https://doi.org/10.3741/JKWRA.2002.35.2.203
  13. 최성욱 (2005). 하도식재설계 기술 I, 도시홍수재해관리연구단.
  14. 최성욱 (2008). FFC4 도시하천 식생하도 2차원 산정모형, 도시홍수재해관리연구단.
  15. Carollo, F.G., Ferro, V., and Termini, D. (2005). “Flow resistance law in channels with flexible submerged vegetation.” Journal of Hydraulic Engineering, ASCE, Vol. 131, pp. 554-564. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(554)
  16. Darby, S.E. (1999). “Open channel and sheet flow over flexible roughness.” 21st Congress of IAHR.
  17. Darby, S.E., and Throne, C.R. (1996). “Predictive stagedischarge curve in channels with bank vegetation.” Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 10, pp. 583-586. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:10(583)
  18. Dijk, E.V. (2006). Development of a GIS-based hydraulicecological model to describe the interaction between floodplain vegetation and riverine hydraulics. Master thesis, University of Twente.
  19. Fukuoka, S., Fujita, K., and Niida, H. (1992). “Prediction in flood water level of river course with vegetation.” Proceeding of the Japan Society of Civil Enginners, No. 447, pp. 17-24.
  20. Helmio, T. (2004). “Flow Resistance due to Lateral Momentum Transfer in Partially Vegetated Rivers.” Water Resources Reserch, Vol. 40, pp. 1-10. https://doi.org/10.1029/2004WR003058
  21. Helmio, T. (2005). “Unsteady 1D flow model of a river with partly vegetated floodplains-application to the Rhine River,” Environmental Modelling & Software, Vol. 20, pp. 361-375. https://doi.org/10.1016/j.envsoft.2004.02.001
  22. James, C.S., Birkhead, A.L, Jordanova, A.A., and Osullovan, J.J. (2004). “Flow resistance of emergent vegetation resistance.” Journal of Hydraulic Research, Vol. 42, pp. 390-398. https://doi.org/10.1080/00221686.2004.9641206
  23. Jarvela, J. (2002). “Flow resistance of flexible and stiff vegetation a flume study with natural plants.” Journal of Hydrology, Vol. 269, pp. 44-54. https://doi.org/10.1016/S0022-1694(02)00193-2
  24. Kaiser, W. (1984). FlieBwiderstandsverhalten in Gerinnen mit durchstromten Ufergenholzzonen. Doctor thesis, TH Darmstadt.
  25. Li, R.M., and Shen, H.W. (1973). “Effect of tall vegetation on flow and sediment.” Journal of the Hydraulics Division, ASCE, Vol. 99, No. 5, pp. 793-814.
  26. Lindner, K. (1982). “Der Stromungswiderstand von Pflanzenbestanden.” Mitteilungen Leichtweiss-Institutfu Wasserbau, No. 75, TU Braunschweig.
  27. Masterman, R., and Throne, C.R. (1992). “Predicting influence of bank vegetation on channel capacity.” Journal of Hydraulic Engineering, ASCE, Vol. 118, No. 7, pp. 1052-1058. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1052)
  28. Mertens, W. (1989). “Zur Frage hydraulischer Berechnungen haturnaher FlieBgewasser.” Wasserwirtschaft, Vol. 79, No. 4, pp. 170-179.
  29. Nuding, A. (1991). “FlieBwiederstandsverhalten in Gerinnen mit Ufergebusch. Entwicklung eines FlieB gewasser mit und ohne Geholzufer, unter besonderer Berucksichtigung von Ufergebusch.” Wasserbau-Mitteilungen, No. 35, TH Darmstadt.
  30. Nuding, A. (1998). “Zur Durchfluβermittlung bei gegliederten Gerinnen.” Wasserwirtschaft Vol. 88, No. 3, pp. 130-132
  31. Pasche, E. (1984). “Turbulenzmechanismen in naturnahen FlieBgewasser und die Moglichkeiten ihrer mathematischen Erfassung.” Mutteukybgen Institut fur Wasserbau und Wasserwirtschaft, No. 52, RWTH Aachen.
  32. Pasche, E., and Rouve, G. (1985). “Overbank Flow with Vegetatively Roughened Floodplains.” Journal of Hydraulic Engineering, ASCE, Vol. 111, No. 9, pp. 1262-1278. https://doi.org/10.1061/(ASCE)0733-9429(1985)111:9(1262)
  33. Petryk, S., and Bosmajian, G.B. (1975). “Analysis of flow through vegetation.” Journal of Hydralulics Division, ASEC, Vol. 101, No. 7, pp. 871-884.
  34. Rickert, K. (1988). “Hydraulische Berechnung naturnaher Gewasser mit Bewuchs.” DVWK-Fortbildung Vol. 13, pp. 25-83.
  35. Schnauder, I. (2004). Stromungsstruktur und Impulsaustausch in gegliederten Gerinnen mit Vorlandvegetation. Dissertation, Institut fur Wasserwirtschaft und Kulturtechnik Universitat Karlsruhe (TH).
  36. Schumacher, F. (1995). Zur Durchflussberechnung gegliederter, natumah gestalteter Fliessgewasser, Mitteilung 127, Tech. Univ. Berlin, Germany.
  37. Stone, B.M., and Shen, H.T. (2002). “Hydraulic resistance of flow in channels with cylindrical roughness.” Journal of Hydraulic Engineering, ASCE, Vol. 128, pp. 500-506. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
  38. Swiatek, D., Kubrak, J., and Chormanski, J. (2006). “Steady 1D water surface model of natural rivers with vegetated floodplain: An application to the Lower Biebrza.” Proceedings of the International Conference on Fluvial Hydraulics River Flow, Vol. 1, pp. 545-553.
  39. Yen, B.C. (1984). “Hydraulic of floodplains: Methodology for backwater computation.” Institute ofHydraulic Engineering Reports No. 84/5 (HWV053), University of Stuttgart., Germany.