• 제목/요약/키워드: Heavy metal fraction

검색결과 128건 처리시간 0.029초

토양 시료조제 방법이 총중금속 농도에 미치는 영향 (Effect of Soil Sample Pretreatment Methods on Total Heavy Metal Concentration)

  • 김정은;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권4호
    • /
    • pp.63-74
    • /
    • 2022
  • In analyzing heavy metals in soil samples, the standard protocol established by Korean Minstry of Environment (KSTM) requires two different pretreatments (A and B) based on soil particle size. Soil particles < 0.15 mm in diameter after sieving are directly processed into acid extraction (method A). However, if the quantity of soil particles < 0.15 mm are not enough, grinding of the particles within 0.15 mm ~ 2 mm is required (method B). Grinding is often needed for some field samples, especially for the soil samples retrieved from soil washing process that contain relatively large-sized soil grains. In this study, two soil samples with different particle size distribution were prepared and analyzed for heavy metals concentrations using two different pretreatment to investigate the effect of grinding. The results showed that heavy metal concentrations tend to increase with the increase of the fraction of small-sized particles. In comparison of the two pretreatments, pretreatment A yielded higher heavy metal concentration than pretreatment B, indicating significant influence of grinding on analytical results. This results suggest that the analytical values of heavy metals in soil samples obtained by KSTM should be taken with caution and carefully reviewed.

Speciation of Some Heavy Metals in Surface and Core Sediments of Kyeonggi Bay, West Coast of Korea

  • Kim, Bum-Soo;Koh, Chul-Hwan;Lee, Chang-Bok
    • Journal of the korean society of oceanography
    • /
    • 제36권1호
    • /
    • pp.9-18
    • /
    • 2001
  • Chemical speciation of five heavy metals (Cr, Cu, Ni, Pb, Zn) has been analyzed from 37 surface and 2 core sediments of Kyeonggi Bay, using the modified sequential extraction method based on Tessier et at. (1979). The results show that heavy metals in the Kyeonggi Bay surface sediments are associated dominantly with the crystal lattice fraction. But in the polluted sediments of the Incheon North Harbor, the importance of the labile fractions increased while that of the lattice fraction decreased. In particular, the adsorbed and the easily reducible fractions showed a noticeable increase. In the core samples emerged a speciation pattern which differed significantly from that of the surface sediments. A sharp increase in the percentage of the reducible and organic/sulfide fractions and a decrease in the lattice fraction were observed. Throughout the vertical column, however, the metal contents in the lattice fraction showed stability while those of the labile fractions showed an upward increase. The strong association of heavy metals with the organic/sulfide fraction could be attributed in part to the sulfate reduction prevailing in the polluted harbor sediments.

  • PDF

Subcellular Distribution of Heavy Metals in Organs of Bivalve Modiolus Modiolus Living Along a Metal Contamination Gradient

  • Podgurskaya, Olga V.;Kavun, Victor Ya.
    • Ocean Science Journal
    • /
    • 제41권1호
    • /
    • pp.43-51
    • /
    • 2006
  • Concentration and distribution of Fe, Zn, Cu, Cd, Mn, Pb, Ni among subcellular fractions (cellular membrane structures and cytosol) and Zn, Cu, Cd among cytoplasmic proteins in the kidney and digestive gland of mussel Modiolus modiolus living along a polymetallic concentration gradient were studied. It was found in the kidney of M. modiolus from contaminated sites that the Fe percent increased in the "membrane" fraction, whereas Zn, Pb, Ni and Mn percent increased in the cytosol compared to the kidney of the control mussel. Note kidney cytosol of M. modiolus from clean and contaminated sites sequestered major parts of Cu and Cd. In the digestive gland of M. modiolus from contaminated sites Fe, Zn, Cd, Mn, Ni percent increased in the "membrane" fraction, whereas Cu, Pb percent increased in the cytosol compared to digestive gland of control mussel. Gel-filtration chromatography shows kidney of M. modiolus contains increased metallothionein-like protein levels irrespective of ambient dissolved metal concentrations. It was shown that the metal detoxification system in the kidney and digestive gland of M. modiolus was efficient under extremely high ambient metal levels. However, under complex environmental contamination in the kidney of M. modiolus, the metal detoxification capacity of metallothionein-like proteins was damaged.

연소조건에서 중금속 염화물의 휘발 및 유독성 제어 (Volatilization and Toxicity Control of Heavy Metal Chlorides under Combustion Conditions)

  • 서용칠
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.175-182
    • /
    • 1993
  • Volatilization of toxic heavy metals, especially, metal chlorides at elevated temperatures in oxidation conditions was observed using a thermogravimetric furnace since such metal chlorides used to be a cause for the disease of industrial workers by their toxicity and high volatile extent. Most of tested metal chloride compounds were evaporated or decomposed into gas phase at elevated temperatures ranged from 200~90$0^{\circ}C$, while CrCl$_3$ and NiC1$_2$became stable with converting into oxide forms. A kinetic model for evaporation/condensation could predict maximum evaporation flux and the calculated values were compared with real evaporation flux. The ratio of two fluxes could be explained as the fraction of impinging gas molecules to the condensing surface( $\alpha$ ) and obtained in the range of 10$^{-3}$ ~10$^{-9}$ for the experimented toxic heavy metal chlorides. This ratio might be used to define the volatile extent or toxicity of such toxic metal compounds. The schemes to avoid volatilization of toxic heavy metals Into the atmosphere were suggested as follows ; 1 ) controlling the compositions of metals and Chlorine produced substances( such as PVC ) in the treated materials using a reverse estimation from regulatory limit and characteristics of a processing facility, 2) Installation of wet type devices such as a scrubber for condensing the metal compounds.

  • PDF

인산염 비료 및 레드머드를 이용한 중금속 오염 광미의 안정화 (Stabilization of Heavy Metal-Contaminated Mine Tailings Using Phosphate Fertilizers and Red Mud)

  • 강신현;안준영;황경엽;서정윤;김재곤;송호철;임수빈;황인성
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.31-41
    • /
    • 2011
  • The objectives of this study were to investigate the efficiencies of the stabilizers such as mono-potassium phosphate (MKP), phosphate fertilizer and red mud in treating the mine tailings contaminated with heavy metals and to characterize the changes in fractionations of the heavy metals during the stabilization. The TCLP results showed that the stabilization efficiencies of Cd, Pb and Zn increased with the increase in the stabilizer dosage and the reaction times. MKP showed the highest efficiencies for the heavy metals stabilization among the stabilizers tested. When the mine tailings were amended with MKP, the TCLP concentrations of Cd, Pb and Zn were reduced by 79~97%, 61~84%, and 89~99%, respectively. When the composite stabilizers, MKP/phosphate fertilizer or MKP/red mud, were used, the stabilization efficiencies were lower than when MKP was used as a single stabilizer. The sequential extraction results showed that carbonates fraction of Cd and Zn increased generally. Especially, when red mud was used, carbonates fraction of Cd and Zn increased 5 and 18 times, respectively. In the case of Pb, the treatment with MKP increased residual fraction by 10 times. The results showed that MKP was the most effective in stabilizing the heavy metals (Cd, Pb and Zn) to improve the efficacy of the composite binders.

연안 오염퇴적물의 재부상에 의한 중금속의 수계용출특성 (Release of Heavy Metals into Water from the Resuspension of Coastal Sediment)

  • 송영채;수바;우정희
    • 대한환경공학회지
    • /
    • 제36권7호
    • /
    • pp.469-475
    • /
    • 2014
  • 본 연구는 B광역시 북항을 대상으로 해양 퇴적물의 물리화학적 특성과 오염도를 평가하고, 해양 퇴적물의 재부상 시중금속의 용출특성 및 생태적 위험성을 평가하였다. 북항 퇴적물의 주요 구성성분은 미세 실트질 및 점토질이었으며, 유기물질과 산휘발성 황화물이 높게 포함되어 퇴적물 내 함유된 중금속으로 인한 생태적 위험도가 높은 것으로 평가되었다. 회분식 실험결과, 퇴적물의 재부상으로 인한 중금속 용출속도는 납>>구리>크롬>>아연>카드뮴 순이었으며, 중금속 용출은 금속 황화물의 산화반응에 기인하는 것으로 평가되었다. 중금속은 퇴적물의 재부상 약 1시간 내에 급격히 용출되었으며, 재부상에 의한 황화물의 산화는 퇴적물에 존재하는 중금속의 광물내 잔류분율을 증가시키고, 유기물과 결합된 중금속의 분율을 감소시킬 뿐만 아니라 퇴적물에 함유된 중금속의 다른 결합분율의 변화에 영향을 미쳤다. 퇴적물의 재부상에 의하여 해수로 용출되는 중금속의 용출량은 재부상 시간, 금속 황화물의 산화속도와 재부상하는 퇴적물의 농도에 영향을 받았다.

소각 비산재의 적정처리를 위한 기초연구(II) - 용출인자의 영향 - (A Basic Study on the Effective Management for MSWI Fly Ash (II) - Effect of Leaching Parameter -)

  • 김진범;이우근;심영주
    • 대한환경공학회지
    • /
    • 제22권7호
    • /
    • pp.1357-1364
    • /
    • 2000
  • 본 연구는 소각 비산재의 물리 화학적 특성이 중금속의 용출 거동에 미치는 영향을 알아보고자 수행되었다. 영향인자로는 비산재의 pH, CEC, 입자크기, 연속추출방법에 의해 분류된 중금속의 존재형태 중에서 exchangeable fraction을 고려하였다. KSLT법에 의한 중금속의 용출율은 pH에 크게 의존적이고 원소에 따라 차이를 보였다. 카드뮴과 구리의 용출율은 pH가 증가함에 따라 감소한 반면, 납과 아연은 중성 또는 강알칼리성 조건에서 증가하는 것으로 나타났는데, 중금속의 용출 거동이 용해도에 의해 제한됨을 나타내 준다. CEC가 중금속의 용출율에 미치는 영향은 pH와 비슷한 것으로 나타났다. 비산재의 입자크기 중에서 $D_{10}$은 KSLT법에 의한 중금속의 용출량과 음의 상관성을 나타내었다. Exchangeable fraction의 경우는 비산재의 CEC 값이 40 meq/100g 미만인 시료는 선형관계에 있지만, 그 외의 CEC 값에서는 비선형관계를 보여주었다.

  • PDF

폐탄광지역 퇴적물의 중금속 존재형태 및 안정화에 관한 연구

  • 이정란;이재영;김휘중
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.253-259
    • /
    • 2005
  • Mine is quickly decline, Nowadays, many of abandoned and closed mines. AMD is abandoned surface water by accumulated yellowboy and caused environmental pollution by amount of heavy metals. The aim of this study waste lime was mixed with the sediment to produce an aggregate far the purpose of neutralizing the acidity and stabilization the heavy metal in the aggregate structure .to pozzolan effect. The result of Waste lime and sediment mixed(5%, 10%, 20%)ration by curing days(3, 7, 38days), After 28 curing days as 5% mixed waste lime leaching solution concentration of all heavy metals is satisfied with regulation limit. Also, the result of fractionate heavy metals to stabilization as 28 curing days very decrease exchangeable and reducible type, and then increase carbonate type. With the above results, waste lime the most effective for the sediment treatment and useful for the recycling waste resource.

  • PDF

폐기물 소각시 중금속 성분의 거동에 관한 연구 (A Study on Behavior of Heavy Metals during Waste Incineration)

  • 박용이;허철구
    • 한국환경과학회지
    • /
    • 제5권6호
    • /
    • pp.785-799
    • /
    • 1996
  • The incineration tests of mixed industrial wastes using the stoker type incinerator are carried out to investigate the partitioning characteristics of heavy metals during incineration. The results obtained from this study are as follow. The partitioning characteristics of heavy metals throughout this incinerator are found that, at given condition of $700^{\circ}C$, the elements with the relatively high boiling point such as Cr, Cu and Pb are partitioned into a bottom ash, a fry ash captured tv cyclone, and a flue gas stream, 67~88%, 2~19% and 6~16% of initial amount entering the incinerator, respectively, but the Cd and Hg of 75~81% is vaporized into the flue gas. It appears that the partitioning characteristics according to the particle size of ash is different between the bottom ash and the fly ash. For bottom ash, the fraction of partitioning into 75${\mu}{\textrm}{m}$ oversized particles is reatively high. For fly ash, the characteristics of distributions with the particle size can not be clearly shown.

  • PDF

매향리 내륙 사격장 토양의 중금속 오염 분포 (Heavy Metal Distribution in Soils from the Maehyang-ri Inland Shooting Range Area)

  • 이준호;박갑성
    • 한국물환경학회지
    • /
    • 제24권4호
    • /
    • pp.407-414
    • /
    • 2008
  • This study was conducted to evaluate the heavy metal contamination in the soils of Maehyang-ri inland shooting range area. The texture of the Maehyang-ri inland shooting range soil was sandy. Extraction of heavy metals reached quasi-equilibrium within 6 hours using shaking with 0.1 N HCl. 95% and 94% of extraction efficiency was observed for Cu and Pb in the Maehyang-ri shooting range soils, respectively. And Cu and Pb contamination of level of the T-1 region soil was $114.4{\pm}5.7mg/kg$ and $362.3{\pm}20.5mg/kg$. This may be due to the effects of mineralogical factor, soil particle size and un-residual fractions such as exchangeable, carbonate, Fe-Mn oxide and organic+sulfide.