• Title/Summary/Keyword: Heavy metal effects

Search Result 477, Processing Time 0.026 seconds

Identification and Characterization of Genes that are Induced after Cadmium Exposure

  • Lee, Mi-Ock
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.73-73
    • /
    • 2003
  • The heavy metal cadmium is a xenobiotic toxicant of environmental and occupational concern and it has been classified as a human carcinogen. Inhalation of cadmium has been implicated in the development of emphysema and pulmonary fibrosis, but, the detailed mechanism by which cadmium induces adverse biological effects is not yet known. Therefore, we undertook the investigation of genes that are induced after cadmium exposure to illustrate the mechanism of cadmium toxicity. (omitted)

  • PDF

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

A Study on the Optimum Operating Conditions and Effects of Wastewater Characteristics in Electrochemical Nitrogen Removal Process (질소 제거를 위한 전기화학적 처리 공정의 최적 운전조건 및 폐수 성상에 따른 영향에 관한 연구)

  • Sim, Joo-Hyun;Kang, Se-Han;Seo, Hyung-Joon;Song, Su-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • This study was performed under four operational conditions for nitrogen removal in metal finishing wastewater. The conditions include electrode gap, reducing agent, the recycling of treated wastewater in 1st step and the simultaneous treatment of nitrate and other materials. Result showed that the removal efficiency of $NO_3{^-}-N$ was highest at the electrode gap of 10 mm. As the electrode gap was shorter than 10 mm, the removal efficiency of $NO_3{^-}-N$ decreased due to increasing in concentration polarization on electrode. And, in case that the electrode gap was longer than 10 mm, the removal efficiency of $NO_3{^-}-N$ increased with an increase in energy consumption. Because hydrogen ions are consumed when nitrate is reduced, reducing reaction of nitrate was effected more in acid solution. As 1.2 excess amount of zinc was injected, the removal efficiency of $NO_3{^-}-N$ increased due to increasing in amount of reaction with nitrate. As the effluent from 1st step in the reactor was recycled into the 1st step, the removal efficiency of $NO_3{^-}-N$ increased. Because the zinc were detached from the cathode and concentration-polarization was decreased due to formation of turbulence in the reactor. The presence of $NH_4{^+}-N$ did not affect the removal efficiency of $NO_3{^-}-N$ but the addition of heavy metal decreased the removal efficiency of $NO_3{^-}-N$. As chlorine is enough in wastewater, the simultaneous treatment of nitrate and ammonia nitrogen may be possible. The problem that heavy metal decrease the removal efficiency of $NO_3{^-}-N$ may be solved by increasing current density or using front step of electrochemical process for heavy metal removal.

Experimental Studies on Dissolution Characteristics of a Heavy Metal(As) in Mining Waste (광산매립지에서 중금속(As)의 용출 특성에 관한 실험적 연구)

  • Han, Choon;Seo, Myoung-Jo;Yoon, Do-Young;Choi, Sang-Il;Lee, Hwa-Young;Kim, Sung-Kyu;Oh, Jong-Kee
    • Journal of Korea Soil Environment Society
    • /
    • v.3 no.1
    • /
    • pp.55-63
    • /
    • 1998
  • This study investigates the contamination mechanism of soil by drainages including acid rains around mining waste sites, and suggests the quantitative methods of prevention against soil contaminations and its alternatives. For these purposes, the dissolution of arsenic in soils, which is one of toxic heavy metals, has been examined experimentally using the artificial acidic solution. Also, in order to prevent dissolution of arsenic by acid rain, the effects of limestone for the neutrality method on the soil were investigated. The arsenic in soil specimen was dissolved by strong acidic solution below pH1.0. The maximum amount of dissolved arsenic increased with decreasing pH value. Furthermore, it was found very effective to use limestones for the neutrality method. The neutralization of limestones in acidic solution was found to follow the equation of chemical reaction-controlling formulation in unreacted-core models.

  • PDF

MTHFR, As3MT and GSTO1 Polymorphisms Influencing Arsenic Metabolism in Residents Near Abandoned Metal Mines in South Korea (폐금속광산 지역 주민의 비소 대사에 영향을 미치는 MTHFR, As3MT, GSTO1 유전자 다형성)

  • Surenbaatar, Ulziikhishig;Kim, Byoung-Gwon;Son, Hyun-Jin;Cho, Seong-Sik;Kim, Gwon-Min;Lim, Hyoun-Ju;Kwon, Jung-Yeon;Kim, Ki-Hwan;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.530-539
    • /
    • 2021
  • Background: In South Korea, areas around abandoned metal mines are designated as regions with high arsenic (As) contamination. However, studies assessing urinary As exposure, As metabolism, and relevant genetic polymorphisms in residents of these metal mine areas are lacking. Objectives: To identify factors associated with As exposure and evaluate the effects of MTHFR, As3MT, and GSTO1 genetic polymorphisms on As metabolism in residents of abandoned metal mine areas by measuring urinary As species. Methods: Urinary As species (arsenite [As3+], arsenate [As5+], monomethyl arsonic acid, and dimethylarsinic acid) were isolated using high-performance liquid chromatography in combination with inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Four genetic polymorphisms (MTHFR A222V, MTHFR E429A, GSTO1 A140D, As3MT M287T) were analyzed in 144 residents of four areas around abandoned metal mines. Results: The study sample was comprised of 34.7% men and 65.3% women, with a mean age of 70.7±10.9 years. The urinary inorganic As concentration was higher among those consuming more than half locally produced rice (0.31 ㎍/L) than those consuming less than half such rice (0.18 ㎍/L). The urinary dimethylarsinic acid concentration was higher in the group that had consumed seafood in the past day (31.68 ㎍/L) than in those who had not (22.37 ㎍/L). Furthermore, individuals heterozygous in the MTHFR A222V and GSTO1 A140D polymorphism had higher urinary arsenic species concentrations than did individuals with a wild type or homozygous for the variant allele. Conclusions: Consumption of locally produced rice was associated with inorganic As exposure, whereas seafood consumption was associated with organic As exposure among residents of abandoned metal mine areas. There was no clear association between MTHFR A222V and GSTO1 A140D polymorphisms and As metabolism.

Effects of Heavy Metals(Zn, Cu, Cr) on Hydration Reaction of Cement (중금속(Zn, Cu, Cr)이 시멘트 수화반응이 미치는 영향)

  • 이동건;오희갑
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.732-739
    • /
    • 2001
  • 산업부산자원으로부터 유입되는 중금속이 시멘트 수화반응에 미치는 영향에 대하여 연구하였다. 출발물질은 순수시약을 사용하여 $C_3$S와 $C_2$S 조성으로 배합하고 여기에 Zn, Cu, Cr의 중금속 산화물을 1000ppm, 2000ppm, 3000ppm 첨가하여 150$0^{\circ}C$에서 1시간 소결하여 중금속의 고용분배, 결정구조, 용출상태 그리고 수화열을 관찰하였다. 중금속중 Zn는 $C_3$S와 간극질에 집중 고용되고 Cu는 간극물질에 집중 고용되며 Cr은 $C_3$S와 $C_2$S에 집중 고용되었다. 광학현미경 및 XRD 관찰결과 중금속 함량별로 $C_3$S와 $C_2$S의 결정상에는 큰 영향이 없는 것으로 나타났다. 그리고 7일간 수화시 Zn는 40~50%, Cu와 Cr은 전량 용출되었다. Conduction calorimeter 분석결과 중금속 함량별 변화에도 $C_3$S와 $C_2$S 수화열에는 차이가 없었다.

  • PDF

The influence of heavy metal on microbial biodegradation of organic contaminants in soil (토양내의 중금속이 유기오염물질 생분해에 미치는 영향 연구)

  • 최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.196-201
    • /
    • 2000
  • The influence of adsorption on cadmium toxicity to soil microorganisms in smectite-rich soils and sediments was quantified as a function of solution and sorbent characteristics. Adsorption and surface complexation experiments were conducted to infer Cd sorption mechanisms to a reference smectite and three fractions of a Veritsol soil, and to elucidate the effects of the surface complexation on Cd bioavailability and toxicity in soils and sediments. Cadmium adsorption isotherms conformed to the Langmuir adsorption model, with adsorptive capacities of the different samples dependent on their characteristics. Equilibrium geochemical modeling (MINTEQA2) was used to predict the speciation of Cd in the soil suspensions using Langmuir and Triple Layer surface complexation models. The influence of adsorption and surface complexation on cadmium toxicity to soil microorganisms was assessed indirectly through the relative change in microbial hydrolysis of fluorescein diacetate (FDA) as a function of total Cd concentration and sorbent characteristics. Adsorption decreased the toxicity of Cd to soil microorganisms. Inner-sphere complexation is more effective than outer-sphere complexation in reducing the bioavailability and toxicity of heavy metals in soils and sediments.

  • PDF

Investigation of Interface Reaction between TiAl Alloys and Mold Materials

  • 김명균;김영직
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.289-289
    • /
    • 1999
  • This paper describes the investment casting of TiAl alloys. The effects of mold material and mold preheating temperature for the investment casting of TiAl on metal-mold interfacial reaction were investigated by means of optical micrography, hardness profiles and an electron probe microanalyzer. The mold materials examined were colloidal silica bonded ZrO₂, ZrSiO₄, A1₂O₃and CaO stabilized ZrO₂. When compared with conventional titanium a1loy, the high aluminum concentration of TiAl alloys helps to lower their reactivity in the molten state. The A1₂O₃mold is a promising mold material for the investment casting of TiAl in terms of the thermal stability, formability and cost. Special attention need to be paid to thermal stability and mold preheating when developing the investment calling of TiAl alloys.

Solidification/Stabilization of Heavy Metals in Sewage Sludge Prior to Use as a Landfill Cover Material (매립지 복토재로의 활용을 위한 하수슬러지 내 중금속의 고형화/안정화)

  • Park, Youn-Jin;Shin, Won-Sik;Choi, Sang-June;Lee, Hoon-Ha
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.665-675
    • /
    • 2010
  • The effects of chemical binders (ladle slag, ordinary portland cement (OPC), hydroxyapatite and calcium hydroxide) on the solidification/stabilization of heavy metals (Cd, Cu, Ni, Pb, Zn) in sewage sludge were evaluated by chemical leaching tests such as EDTA extraction, TCLP and sequential extraction. The results of EDTA extraction showed that heavy metal concentrations in sewage sludge were highly reduced after solidification/stabilization with slag, cement or calcium hydroxide. However, EDTA interrupted solidification/stabilization of heavy metals by hydroxyapatite. The TCLP-extracted heavy metal concentrations in sewage sludge after solidification/stabilization with chemical amendments were highly reduced. However, Cu concentration in the sewage sludge solidified/stabilized with slag, cement or calcium hydroxide increased because the pH of TCLP solution was higher than 7. Mixtures of sludge 1 : slag 0.2 : calcium hydroxide 0.1 (wt ratio) showed the least leachability in batch TCLP and EDTA extraction. The results of sequential extraction (SM&T, formaly BCR) indicated that the distribution of heavy metals changed from exchangable and carbonate fractions to strongly bound organic fraction. It was found that maximum leachate concentrations of Ba, Cd, Cr and Pb from sewage sludge amended with slag and calcium hydroxide were far below US EPA TCLP regulations.

Bioleaching of Heavy Metals from Shooting Range Soil Using a Sulfur-Oxidizing Bacteria Acidithiobacillus thiooxidans (황산화균 Acidithiobacillus thiooxidans를 이용한 사격장 토양 내 중금속 용출)

  • Han, Hyeop-Jo;Lee, Jong-Un;Ko, Myoung-Soo;Choi, Nag-Choul;Kwon, Young-Ho;Kim, Byeong-Kyu;Chon, Hyo-Taek
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.457-469
    • /
    • 2009
  • Applicability of bioleaching techniques using a sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans, for remediation of shooting range soil contaminated with toxic heavy metals was investigated. The effects of sulfur concentration, the amount of bacterial inoculum and operation temperature on the efficiency of heavy metal solubilization were examined as well. As sulfur concentration and the amount of bacterial inoculum increased, the solubilization efficiency slightly increased; however, significant decrease of heavy metal extraction was observed with no addition of sulfur or bacterial inoculum. Bacteria solubilized the higher amount of heavy metals at $26^{\circ}C$ than $4^{\circ}C$. Lead showed the highest removal amount from the contaminated soil but the lowest removal efficiency when compared with Zn, Cu and Cr. It was likely due to formation of insoluble $PbSO_{4(s)}$ as precipitate or colloidal suspension. Sequential extraction of the microbially treated soil revealed that the proportion of readily extractable phases of Zn, Cu and Cr increased by bacterial leaching, and thus additional treatment or optimization of operation conditions such as leaching time were required for safe reuse of the soil. Bioleaching appeared to be a useful strategy for remediation of shooting range soil contaminated with heavy metals, and various operating conditions including concentration of sulfur input, inoculum volume of bacteria, and operation temperature exerted significant influence on bioleaching efficiency.