Bioleaching of Heavy Metals from Shooting Range Soil Using a Sulfur-Oxidizing Bacteria Acidithiobacillus thiooxidans

황산화균 Acidithiobacillus thiooxidans를 이용한 사격장 토양 내 중금속 용출

  • Han, Hyeop-Jo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Ko, Myoung-Soo (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Choi, Nag-Choul (Engineering Research Institute, Chonnam National University) ;
  • Kwon, Young-Ho (Halla Engineering and Construction Co.) ;
  • Kim, Byeong-Kyu (Halla Engineering and Construction Co.) ;
  • Chon, Hyo-Taek (Department of Energy Resources Engineering, Seoul National University)
  • 한협조 (전남대학교 에너지자원공학과) ;
  • 이종운 (전남대학교 에너지자원공학과) ;
  • 고명수 (광주과학기술원 환경공학과) ;
  • 최낙철 (전남대학교 공업기술연구소) ;
  • 권영호 (한라건설(주)) ;
  • 김병규 (한라건설(주)) ;
  • 전효택 (서울대학교 에너지자원공학과)
  • Published : 2009.10.28

Abstract

Applicability of bioleaching techniques using a sulfur-oxidizing bacteria, Acidithiobacillus thiooxidans, for remediation of shooting range soil contaminated with toxic heavy metals was investigated. The effects of sulfur concentration, the amount of bacterial inoculum and operation temperature on the efficiency of heavy metal solubilization were examined as well. As sulfur concentration and the amount of bacterial inoculum increased, the solubilization efficiency slightly increased; however, significant decrease of heavy metal extraction was observed with no addition of sulfur or bacterial inoculum. Bacteria solubilized the higher amount of heavy metals at $26^{\circ}C$ than $4^{\circ}C$. Lead showed the highest removal amount from the contaminated soil but the lowest removal efficiency when compared with Zn, Cu and Cr. It was likely due to formation of insoluble $PbSO_{4(s)}$ as precipitate or colloidal suspension. Sequential extraction of the microbially treated soil revealed that the proportion of readily extractable phases of Zn, Cu and Cr increased by bacterial leaching, and thus additional treatment or optimization of operation conditions such as leaching time were required for safe reuse of the soil. Bioleaching appeared to be a useful strategy for remediation of shooting range soil contaminated with heavy metals, and various operating conditions including concentration of sulfur input, inoculum volume of bacteria, and operation temperature exerted significant influence on bioleaching efficiency.

Pb, Zn, Cu등으로 오염된 사격장 토양을 대상으로 하여 황산화균인 Acidithiobacillus thiooxidans를 이용한 미생물학적 중금속 용출 기술의 적용 가능성을 파악하고 에너지원인 황의 농도, 미생물 접종량, 반응 온도 등의 조건이 중금속 용출 효율에 미치는 영향을 규명하였다. 황의 투입량 및 미생물의 초기 접종량이 높을수록 중금속 용출 효율이 다소 높게 나타났으나, 황 및 미생물을 접종하지 않은 경우에는 중금속 용출량이 뚜렷하게 감소하였다. 또한 $26^{\circ}C$ 조건에서의 중금속 용출량에 비하여 $4^{\circ}C$ 조건에서의 용출량은 매우 낮았다. 오염 농도가 가장 높은 Pb의 경우 다른 중금속에 비하여 월등히 높은 용출량을 나타내었으나 그 효율은 가장 낮았으며 이는 용출되어 나온 Pb가 $PbSO_{4(s)}$로써 침전 또는 콜로이드 입자를 형성하였기 때문으로 판단된다. 연속추출법을 적용하여 반응 전과 후의 중금속 존재 형태의 변화를 파악한 결과, Zn, Cu, Cr의 경우 용출이 용이한 형태의 비율이 증가함으로써 추가적인 조치가 필요하였다. 중금속으로 오염된 사격장 토양 등의 현장 복원에 미생물학적 용출 기법이 유용하게 적용될 수 있으며 이 때 에너지원의 농도, 미생물의 접종량, 반응 온도 등의 인자가 용출 효율에 매우 중요한 영향을 미치는 것으로 확인되었다.

Keywords

References

  1. Bowen, H.J.M. (1979) Environmental chemistry of the elements. Academic Press, London
  2. Chen, S.-Y. and Lin, J.-G. (2000) Influence of solid content on bioleaching of heavy metals from contaminated sediment by Thiobacillus spp. J. Chem. Technol. Biotechnol., v.75, p.649-656 https://doi.org/10.1002/1097-4660(200008)75:8<649::AID-JCTB260>3.0.CO;2-F
  3. Chen, S.-Y. and Lin, P.-L. (2009) Optimization of operating parameters for the metal bioleaching process of contaminated soil. Separ. Purif. Technol. (in review)
  4. Chen, Y.X., Hua, Y.M., Zhang, S.H. and Tian, G.M. (2005) Transformation of heavy metal forms during sewage sludge bioleaching. J. Haz. Mater., v.123, p.196-202 https://doi.org/10.1016/j.jhazmat.2005.03.047
  5. D'Hughes, P., Cezac, P., Cabral, T., Battaglia, F., Truongmeyer, X.M. and Morin, D. (1997) Bioleaching of a cobaltiferous pyrite: a continuous laboratory-scale study at high solids concentration. Miner. Eng., v.10, p.507-527
  6. Dastidar, M.G., Malik, A. and Roychoudhury, P.K. (2000) Biodesulphurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energ. Convers. Manage., v.41, p.375-388 https://doi.org/10.1016/S0196-8904(99)00085-0
  7. Dew, D.W., Lawson, E.N. and Broadhurst, J.L. (1998) The BIOX process for biooxidation of gold-bearing ore or concentrates, In: Rawlings, D.E. (ed.), Biomining: theory, microbes and industrial processes. Springer-Verlag, Berlin, p.45-80
  8. Iskandar, L.K. (2001) Environmental restoration of metals contaminated soils. Lewis Publishers
  9. Jang, A., Jang H.-Y., Kim S.-M., Lee, J.-U. and Kim, I.S. (2002) Decontamination of heavy metals from dewatered sludge by Acidithiobacillus ferrooxidans. Environ. Eng. Res., v.7, p.199-206 https://doi.org/10.4491/eer.2002.7.4.199
  10. Jenkins, T.F., Walsh, M.E., Thorne, P.G., Miyares, P.H., Ranney, T.A., Grant, C.L. and Esparza, J.R. (1998) Vertical migration potential of metal contaminants at small arms furing ranges, Camp Edwards Military Reservation. Massachusetts. U.S. Army Corps of Engineers, Waterways Experiment Station. IRRP-98-3
  11. Jung, M.C. (1994) Sequential extraction of heavy metals in soils and a case study. Econ. Environ. Geol., v.27, p.469-477. (in Korean)
  12. Kloke, A. (1979) Content of arsenic, cadmium, chromium, fluorine, lead, mercury, and nickel in plants grown on contaminated soil. UN-ECE Symp. 325p
  13. Ko, I.W., Lee, K.P., Lee, C.H. and Kim, K.W. (2004) Assessment of pilot-scale acid washing soil contaminated with As and heavy metals. Proceedings of 2004 Conference of Korean Society of Soil and Groundwater Environment, p.239-242. (in Korean)
  14. Lee, J.-U., Kim, S.M., Kim, K.W. and Kim, I.S. (2005) Microbial removal of uranium from uranium-bearing black shale. Chemosphere, v.59, p.147-154 https://doi.org/10.1016/j.chemosphere.2004.10.006
  15. Liu, Y.G., Zhou, M., Zeng, G.M., Li, X. Xu, W.H. and Fan, T. (2007) Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J. Haz. Mater., v.141, p.202-208 https://doi.org/10.1016/j.jhazmat.2006.06.113
  16. Ministry of National Defense Republic of Korea (2002) Assessment of pollution in shooting range soil and study about prevention measure of pollution diffuse
  17. Munoz, J.A., Gonzalez, F., Blázquez, M.L. and Ballester, A. (1995) A study of the bioleaching of a Spanish uranium ore: I. A review of the bacterial leaching in the treatment of uranium ores. Hydrometallurgy, v.38, p.39-57 https://doi.org/10.1016/0304-386X(94)00039-6
  18. Nourbakhsh, M., Sag, Y., Ozer, D., Aksu, Z., Katsal, T. and Calgar, A. (1994) A comparative study of various biosorbents for removal of chromium(VI) ions from industrial wastewater. Process Biochem., v.29, p.1-5 https://doi.org/10.1016/0032-9592(94)80052-9
  19. Park, H.-S., Lee, J.-U. and Ahn, J.-W. (2007) The effects of Acidithiobacillus ferrooxidans on the leaching of cobalt and strontium adsorbed onto soil particles. Environ. Geochem. Hlth., v.29, p.303-312 https://doi.org/10.1007/s10653-007-9095-z
  20. Park, S.H., Bae, B.H., Kim, M.K. and Chang, Y.Y. (2008) Distribution and behavior of mixed contaminants, explosives and heavy Metals at a small scale military shooting range. J. Korean Soc. on Water Quality, v.24, p.523-532. (in Korean)
  21. Rulkens, W.H. (1995) Methods of cleaning contaminated soils and sediments, In: Grotenhuis, J.T.C., Tichy, R., Salomons, W., Forstner, U. and Mader, P. (ed.), Heavy metals. Springer-Verlag, Berlin, p.171-191
  22. Stookey, L.L. (1970) Ferrozine - a new spectrophotometric reagent for iron. Anal. Chem., v.42, p.779-781 https://doi.org/10.1021/ac60289a016
  23. Tessier, A., Campbell, P.G.C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metal. Anal. Chem., v.51, p.844-850 https://doi.org/10.1021/ac50043a017
  24. Tyagi, R.D. and Couillard, D. (1989) Bacterial leaching of metals from sludge, In: Cheremisinoff, P.E. (ed.), Encyclopedia of environmental control technology, v.3. Gulf Publishing Co, Houston, p.557-591
  25. Waksman, S.A. and Joffe, I.S. (1922) Micro$\ddot{o}$rganisms concerned with the oxidation of sulphur in soil: II. Thiobacillus thiooxidans, a new sulphur oxidizing organism isolated from the soil. J. Bacteriol., v.7, p.239-256
  26. Wierzbicka, M. (1999) Comparison of lead tolerance in Allium cepa with other plant species. Environ. Pollution, v.104 p.41-52 https://doi.org/10.1016/S0269-7491(98)00156-0