• Title/Summary/Keyword: Heavy Ion Therapy

Search Result 33, Processing Time 0.017 seconds

A Study on the Difference of Geometrical Modeling in the Calculation of Shielding and Activation Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 차폐 및 방사화 계산에서 기하학적 모델링의 차이에 따른 결과 연구)

  • Heo, Seunguk;Song, Yongkeun;Cho, Gyuseok;Han, Moojae;Park, Jikoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.429-435
    • /
    • 2017
  • In order to increase the therapeutic effect of radiation, there has been an increase in the use of conventional photon therapy. The intensive care unit should pay more attention to the radiation safety evaluation due to the higher energy and the larger facility compared to the existing Photon treatment. These radiation safety evaluations are mainly performed by using Monte Carlo simulation, and the first thing to be done is geometric modeling. The Heavy-ion treatment facility uses synchrotron as the accelerating device, which is difficult to precisely model geometrically and is mostly modeled briefly. This study investigated the effect of simplification and precise implementation of Dipole magnet among the components of synchrotron acceleration device on the radiation safety evaluation. The results show that the simplified geometric model is overestimated with the precisely implemented geometric model. Therefore, it is considered that the radiological safety evaluation results in more reliable results of the precise geometric modeling.

Development of Signal Processing Modules for Double-sided Silicon Strip Detector of Gamma Vertex Imaging for Proton Beam Dose Verification (양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발)

  • Lee, Han Rim;Park, Jong Hoon;Kim, Jae Hyeon;Jung, Won Gyun;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Recently, a new imaging method, gamma vertex imaging (GVI), was proposed for the verification of in-vivo proton dose distribution. In GVI, the vertices of prompt gammas generated by proton induced nuclear interaction were determined by tracking the Compton-recoiled electrons. The GVI system is composed of a beryllium electron converter for converting gamma to electron, two double-sided silicon strip detectors (DSSDs) for the electron tracking, and a scintillation detector for the energy determination of the electron. In the present study, the modules of a charge sensitive preamplifier (CSP) and a shaping amplifier for the analog signal processing of DSSD were developed and the performances were evaluated by comparing the energy resolutions with those of the commercial products. Based on the results, it was confirmed that the energy resolution of the developed CSP module was a little lower than that of the CR-113 (Cremat, Inc., MA), and the resolution of the shaping amplifier was similar to that of the CR-200 (Cremat, Inc., MA). The value of $V_{rms}$ representing the magnitude of noise of the developed system was estimated as 6.48 keV and it was confirmed that the trajectory of the electron can be measured by the developed system considering the minimum energy deposition ( > ~51 keV) of Compton-recoiled electron in 145-${\mu}m$-thick DSSD.

Evaluation of Fabricated Semiconductor Sensor for Verification of γ-ray Distribution in Brachytherapy (근접치료용 방사성 동위원소의 선량분포 확인을 위한 디지털 반도체 센서의 제작 및 평가)

  • Park, Jeong-Eun;Kim, Kyo-Tae;Choi, Won-Hoon;Lee, Ho;Cho, Sam-Joo;Ahn, So-Hyun;Kim, Jin-Young;Song, Yong-Keun;Kim, Keum-bae;Huh, Hyun-Do;Park, Sung-Kwang
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • In radiation therapy fields, a brachytherapy is a treatment that kills lesion of cells by inserting a radioisotope that keeps emitting radiation into the body. We currently verify the consistency of radiation treatment plan and dose distribution through film/screen system (F/S system), provide therapy after checking dose. When we check dose distribution, F/S systems have radiation signal distortion because there is low resolution by penumbra depending on the condition of film developed. In this study, We fabricated a $HgI_2$ Semiconductor radiation sensor for base study in order that we verify the real dose distribution weather it's same as plans or not in brachytherapy. Also, we attempt to evaluate the feasibility of QA system by utilizing and evaluating the sensor to brachytherapy source. As shown in the result of detected signal with various source-to-detector distance (SDD), we quantitatively verified the real range of treatment which is also equivalent to treatment plans because only the low signal estimated as scatters was measured beyond the range of treatment. And the result of experiment that we access reproducibility on the same condition of ${\gamma}$-ray, we have made sure that the CV (coefficient of variation) is within 1.5 percent so we consider that the $HgI_2$ sensor is available at QA of brachytherapy based on the result.