DOI QR코드

DOI QR Code

Development of Signal Processing Modules for Double-sided Silicon Strip Detector of Gamma Vertex Imaging for Proton Beam Dose Verification

양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발

  • Lee, Han Rim (Department of Nuclear Engineering, Hanyang University) ;
  • Park, Jong Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Jae Hyeon (Department of Nuclear Engineering, Hanyang University) ;
  • Jung, Won Gyun (Heavy-ion Clinical Research Division, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University)
  • 이한림 (한양대학교 원자력공학과) ;
  • 박종훈 (한양대학교 원자력공학과) ;
  • 김재현 (한양대학교 원자력공학과) ;
  • 정원균 (한국원자력의학원 중입자임상연구부) ;
  • 김찬형 (한양대학교 원자력공학과)
  • Received : 2014.03.12
  • Accepted : 2014.06.04
  • Published : 2014.06.30

Abstract

Recently, a new imaging method, gamma vertex imaging (GVI), was proposed for the verification of in-vivo proton dose distribution. In GVI, the vertices of prompt gammas generated by proton induced nuclear interaction were determined by tracking the Compton-recoiled electrons. The GVI system is composed of a beryllium electron converter for converting gamma to electron, two double-sided silicon strip detectors (DSSDs) for the electron tracking, and a scintillation detector for the energy determination of the electron. In the present study, the modules of a charge sensitive preamplifier (CSP) and a shaping amplifier for the analog signal processing of DSSD were developed and the performances were evaluated by comparing the energy resolutions with those of the commercial products. Based on the results, it was confirmed that the energy resolution of the developed CSP module was a little lower than that of the CR-113 (Cremat, Inc., MA), and the resolution of the shaping amplifier was similar to that of the CR-200 (Cremat, Inc., MA). The value of $V_{rms}$ representing the magnitude of noise of the developed system was estimated as 6.48 keV and it was confirmed that the trajectory of the electron can be measured by the developed system considering the minimum energy deposition ( > ~51 keV) of Compton-recoiled electron in 145-${\mu}m$-thick DSSD.

최근, 인체 내 양성자 빔의 선량 분포를 검증하기 위해 새로운 개념의 영상기법인 감마 꼭지점 영상(gamma vertex imaging, GVI)이 제안되었다. GVI는 양성자 빔과 매질과의 핵반응으로 인해 발생하는 즉발감마선의 발생 위치를 결정하기 위해 입사한 감마선을 전자 변환기에서 전자로 변환한 후 전자의 궤적을 추적하는 방법을 사용한다. GVI 영상장치는 감마선을 전자로 변환하기 위한 전자 변환기, 전자 궤적을 추적하기 위한 2대의 양면 실리콘 스트립 검출기(double-sided silicon strip detector, DSSD)와 전자의 에너지 결정을 위한 섬광체 흡수부 검출기로 이루어진다. 본 연구에서는 GVI 영상 장치를 구성하는 DSSD 전용의 신호처리 장치를 구성하는 핵심 장치인 전하 민감형 전치증폭기(charge sensitive preamplifier, CSP) 모듈과 성형 증폭기 모듈을 개발하였으며, 상용 제품과 성능을 비교해 보았다. 감마선원의 에너지 스펙트럼 측정 결과, 자체제작 CSP 모듈이 상용 제품보다 에너지 분해능이 약간 낮은 것을 확인하였으며, 성형 증폭기의 경우 거의 동일한 성능을 보여주는 것을 확인할 수 있었다. 개발된 신호처리 장치의 노이즈의 크기를 나타내는 $V_{rms}$ 값은 6.48 keV으로 평가되었으며, 이는 145 ${\mu}m$의 DSSD에 전달되는 전자의 에너지( > ~51 keV)를 고려할 때 본 장치를 이용하여 전자의 궤적을 충분히 정확하게 결정할 수 있음을 확인할 수 있음을 보여준다.

Keywords

References

  1. Schardt D, Elsasser T, Schulz-Ertner D. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 2010;82:383-425. https://doi.org/10.1103/RevModPhys.82.383
  2. Wilson RR. Radiological. use of fast protons. Radiology. 1946;47:487-491. https://doi.org/10.1148/47.5.487
  3. PTCOG patient statistics of particle therapy centers per end of 2012. http://ptcog.web.psi.ch/Archive/pat_statistics/Patientstatistics-updateMar2013.pdf.
  4. Paganetti H. Range uncertainties in proton therapy and the role of Monte Carlo simulations. Phys. Med. Biol. 2012;57:R99-R117. https://doi.org/10.1088/0031-9155/57/11/R99
  5. Lu HM. A point dose method for in vivo range verification in proton therapy. Phys. Med. Biol. 2008;53:N415-N422. https://doi.org/10.1088/0031-9155/53/23/N01
  6. Knopf AC. Lomax A. In vivo proton range verification: a review. Phys. Med. Biol. 2012;58:R131-R160.
  7. Min CH, Kim CH, Youn MY, Kim JW. Prompt gamma measurements for locating the dose fall-off region in the proton therapy. Appl. Phys. Lett. 2006;89:183517. https://doi.org/10.1063/1.2378561
  8. Min CH, Lee HR, Lee SB, Kim CH. Development of array-type prompt gamma measurement system for in vivo range verification in proton therapy. Med. Phys. 2012;39:2100-2107. https://doi.org/10.1118/1.3694098
  9. Lee HR, Park JH, Kim HS, Kim CH. Two- dimensional measurement of the prompt-gamma distribution for proton dose distribution monitoring. J. Korean Phys. Soc. 2012;61:1385-1389 https://doi.org/10.3938/jkps.63.1385
  10. Bom V, Joulaeizadeh L, Beekman F. Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife- edgeshaped slit. Phys. Med. Biol. 2012;57:297-308. https://doi.org/10.1088/0031-9155/57/2/297
  11. Smeets J, Roellinghoff F, Prieels D, Stichelbaut F, Benilov A, Busca P, Fiorini C, Peloso R, Basilavecchia M, Frizzi T, Dehaes JC, Dubus A. Prompt gamma imaging with a slit camera for real- time range control in proton therapy. Phys. Med. Biol. 2012;57:3371-3405. https://doi.org/10.1088/0031-9155/57/11/3371
  12. Mackin D, Peterson S, Beddar S, Polf J. Evaluation of a stochastic reconstruction algorithm for use in Compton camera imaging and beam range verification from secondary gamma emission during proton therapy. Phys. Med. Biol. 2012;57:3537-3553. https://doi.org/10.1088/0031-9155/57/11/3537
  13. Kurosawa S, Kubo H, Ueno K, Kabuki S, Iwaki S, Takahashi M, Taniue K, Higashi N, Miuchi K, Tanimori T, Kim D, Kim J. Prompt gamma detection for range verification in proton therapy. Curr. Appl. Phys. 2012;12:364-368. https://doi.org/10.1016/j.cap.2011.07.027
  14. Kim CH, Park JH, Seo H, Lee HR. Gamma electron vertex imaing and application to beam range verification in proton therapy. Med. Phys. 2012;39: 1001-1005 https://doi.org/10.1118/1.3662890
  15. Thomas SL, Davinson T, Shotter AC. A modular amplifier system for the readout of silicon strip detectors. Nucl. Instrum. Meth. A. 1990;288:212-218. https://doi.org/10.1016/0168-9002(90)90488-R

Cited by

  1. Prototype system for proton beam range measurement based on gamma electron vertex imaging vol.857, 2017, https://doi.org/10.1016/j.nima.2017.03.022
  2. Development of Dual-mode Signal Processing Module for Multi-slit Prompt-gamma Camera vol.27, pp.1, 2016, https://doi.org/10.14316/pmp.2016.27.1.37
  3. Monitoring 3D dose distributions in proton therapy by reconstruction using an iterative method vol.114, 2016, https://doi.org/10.1016/j.apradiso.2016.05.005
  4. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator vol.107, 2016, https://doi.org/10.1016/j.apradiso.2015.10.019
  5. beam-range measurement in proton therapy: Experimental results vol.113, pp.11, 2018, https://doi.org/10.1063/1.5039448