• Title/Summary/Keyword: Double-sided silicon strip detector

Search Result 2, Processing Time 0.015 seconds

Development of Signal Processing Modules for Double-sided Silicon Strip Detector of Gamma Vertex Imaging for Proton Beam Dose Verification (양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발)

  • Lee, Han Rim;Park, Jong Hoon;Kim, Jae Hyeon;Jung, Won Gyun;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.81-88
    • /
    • 2014
  • Recently, a new imaging method, gamma vertex imaging (GVI), was proposed for the verification of in-vivo proton dose distribution. In GVI, the vertices of prompt gammas generated by proton induced nuclear interaction were determined by tracking the Compton-recoiled electrons. The GVI system is composed of a beryllium electron converter for converting gamma to electron, two double-sided silicon strip detectors (DSSDs) for the electron tracking, and a scintillation detector for the energy determination of the electron. In the present study, the modules of a charge sensitive preamplifier (CSP) and a shaping amplifier for the analog signal processing of DSSD were developed and the performances were evaluated by comparing the energy resolutions with those of the commercial products. Based on the results, it was confirmed that the energy resolution of the developed CSP module was a little lower than that of the CR-113 (Cremat, Inc., MA), and the resolution of the shaping amplifier was similar to that of the CR-200 (Cremat, Inc., MA). The value of $V_{rms}$ representing the magnitude of noise of the developed system was estimated as 6.48 keV and it was confirmed that the trajectory of the electron can be measured by the developed system considering the minimum energy deposition ( > ~51 keV) of Compton-recoiled electron in 145-${\mu}m$-thick DSSD.

Performance Evaluation of Component Detectors of Double-scattering Compton Camera (이중 산란형 컴프턴 카메라 구성 검출기 성능 평가)

  • Seo, Hee;Park, Jin-Hyung;Kim, Chan-Hyeong;Lee, Ju-Hahn;Lee, Chun-Sik;Lee, Jae-Sung
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • Prototype double-scattering Compton camera, which consists of three gamma-ray detectors, that is, two double-sided silicon strip detectors (DSSDs) as scatterer detectors and a NaI(Tl) scintillation detector as an absorber detector, could provide high imaging resolution with a compact system. In the present study, the energy resolution and the timing resolution of component detectors were measured, and the parameters affecting the energy resolution of the DSSD were examined in terms of equivalent noise charge (ENC). The energy resolutions of the DSSD-1 and DSSD-2 were, in average, $25.2keV{\pm}0.8keV$ FWHM and $31.8keV{\pm}4.6keV$ FWHM at the 59.5 keV peak of $^{241}Am$, respectively. The timing resolutions of the DSSD and NaI(Tl) scintillation detector were 57.25 ns FWHM and 7.98 ns FWHM, respectively. In addition, the Compton image was obtained for a point-like $^{137}Cs$ gamma source with double-scattering Compton camera. From the present experiment, the imaging resolution of 8.4 mm FWHM (angular resolution of $8.1^{\circ}$ FWHM), and the imaging sensitivity of $1.5{\times}10^{-7}$ (intrinsic efficiency of $1.9{\times}10^{-6}$) were obtained.