• 제목/요약/키워드: Heavy Floor Impact Sound

검색결과 125건 처리시간 0.027초

슬래브의 동특성과 중량충격음의 상관관계에 관한 연구 (Research about correlation of slab vibration mode and heavy-weight floor impact sound)

  • 정진연;이상우;임정빈;정갑철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.839-843
    • /
    • 2008
  • Receiving room's floor impact sound level is been influenced to various factor of slab thickness, room size, structure etc. This study examined the noise of upper part slab and room mode in receiving room to be importance factor that influence in receiving room level among this factors. According to this study, vibration mode in slab and room mode are concentrated on frequency that is high level relatively. This causes bad effect in floor impact sound level. Therefore, method to reduce floor impact sound level is to change vibration mode using slab upper part's resilient material or reduce room mode in receiving room.

  • PDF

바닥 진동 거동 및 충격원 특성을 고려한 바닥 중량 충격음 평가방법 고찰 (Consideration on Rating Method for Heavy Impact Sound Taking Account of the Characteristics of Floor Vibration and Impact Sources)

  • 이민정;최현기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권4호
    • /
    • pp.69-79
    • /
    • 2017
  • 표준 중량 충격원의 실제 충격원 재현성에 대한 논란이 있음에도 현재 기준에서는 뱅머신 방식만 사용하고 있다. 현행 기준의 평가방법 및 등급 기준이 충격원 특성을 고려하지 못하고 있어 충격원의 선택에 따라 바닥충격음 차단 성능 등급에 차이가 발생하기 때문이다. 본 연구는 충격원 특성 외에 바닥 진동 거동 특성을 함께 고려한 현행 기준의 바닥충격음 평가 방법 고찰을 목적으로 한다. 공동주택 mock-up 실험동에서 표준 중량 충격원과 실충격원에 대하여 바닥충격음을 측정하고 이를 이용하여 해외 평가 방법과 우리나라의 평가 방법을 비교 검토하였다. 또한 현행 바닥충격음 평가 기준의 대상 주파수 범위를 벗어나는 저주파수 대역의 음압레벨은 네텔란드의 저주파 소음 인지 곡선과 국내 연구자가 제안한 저주파 소음 기준안을 이용하여 평가하였다. 그 결과 기준 및 평가 산정 방법에 따라 성능 평가 결과가 상이하며, 바닥 진동의 지배 주파수 범위에서 모든 충격원에 대한 바닥충격음 가청 소음으로 인식하여 성가시게 느낄 가능성이 매우 크다. 현행 평가 기준의 단일수치 평가량 산정 방법은 충격원에 따라 상이한 음압레벨 스펙트럼 특성을 제대로 반영하지 못하며, 바닥의 진동 거동 지배 주파수를 포함하는 저주파수 대역의 음압레벨을 고려하지 않고 있어 바닥충격음에 대한 평가 결과와 사람의 인지 수준에 차이가 발생할 수 있다. 따라서 충격원에 따른 음압레벨의 스펙트럼 특성과 저주파수 대역의 음압레벨을 반영할 수 있도록 현행 기준의 평가 방법을 보완할 필요가 있다.

A Study on Floor Impact Sound Insulation Performance of Cross-Laminated Timber (CLT): Focused on Joint Types, Species and Thicknesses

  • Yeon-Su HA;Hyo-Jin LEE;Sang-Joon LEE;Jin-Ae SHIN;Da-Bin SONG
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권5호
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the floor impact sound insulation performance of Korean domestic Cross-Laminated Timber (CLT) slabs was evaluated according to their joint types, species and thicknesses in laboratory experiments. The sound insulation performance of the CLT has not been investigated before, thus, this study was conducted to quantify basic data on floor impact sound insulation performance of CLT slabs. 5-ply and 150 mm thick CLT panels made of 2 species, Larix kaempferi and Pinus densiflora, were used for the study. The CLT panels were assembled by 3 types of inter-panel joints to form floor slabs: spline, butt and half-lap. And the 150 mm thick Larix CLT slabs were stacked to the thicknesses of 300 mm and 450 mm. The heavy-weight floor impact sound insulation performance of the 150 mm CLT slabs were evaluated to be 70 dB for the Larix slabs and 71.6 dB for the Pinus slabs, and the light-weight floor impact sound insulation performance, 78.3 dB and 79.6 dB, respectively. No significant difference in the sound insulation performance was found between the slabs of the 2 species or among the 3 types of joints. The reduction of 1 dB in the heavy-weight floor impact sound and 1.6 dB in the light-weight floor impact sound per 30 mm increase in thickness were confirmed through the experiments. This study can be viewed as the basic research for the evaluation of floor impact sound insulation performance of CLT.

벽식구조 표준시험동에서 중량충격음장에 관한 연구 (Investigation of the heavy-weight floor impact sound field in a testing building with bearing wall structure)

  • 유승엽;이신영;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.969-973
    • /
    • 2007
  • The heavy-weight floor impact sound field of the receiving room in a testing building with bearing wall structure was investigated using bang machine and impact ball. The sound field was investigated through the impact sound pressure level distribution by the field measurement and computational analysis. Predicted sound field using the computational analysis agree with measurement result in the low frequency band. Result shows that standard deviations of the single number rating value are about 2dB in each impact source. Particularly, impact sound pressure level at 120cm height in 63Hz octave band was 5dB lower than spatial averaging value. It was found that receiving positions in the ministry of construction and transportation notice should be reconsidered.

  • PDF

벽식구조 바닥판의 중량충격음 특성 분석을 위한 축소모형의 활용 (Experimental Studies for Analysing of Characteristics of Floor Impact Sound through a Scale Model with Box-frame Type Structure)

  • 유승엽;전진용
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.805-812
    • /
    • 2011
  • This study investigated the characteristics of heavy-weight floor impact sounds of box-frame type structure using 1:10 scale model. Ten types of floor structures(bare slabs and floating floors) were evaluated in terms of dynamic stiffness and loss factor. Floor vibrations and radiated sounds generated by simulated impact source were also measured. The results showed that the bakelite was appropriate for simulating concrete slab in the 1:10 scale model, and surface velocity and sound pressure level of concrete slab measured from the scale model showed similar tendencies with the results from in-situ in frequency domain. It was also found that dynamic behaviors of layered floor structures in the 1:10 scale model were similar to those in a real scale. Therefore, the use of 1:10 scale model would be useful for evaluating the heavy-weight floor impact sound insulation of layered floor structures when the frequency-dependent dynamic properties of each material are known.

라멘복합구조 공동주택의 바닥충격음 실태 (Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings)

  • 정정호;송희수;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험 (Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method)

  • 신훈;백건종;송민정;장길수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.581-586
    • /
    • 2008
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of 31.5Hz - 500Hz is more correspondent to psycho-acoustic response than that of measurement frequency of 63Hz - 500Hz which is for KS F 2863-2, existing rating method.

  • PDF

현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험 (Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method)

  • 신훈;김선우;장길수
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.282-287
    • /
    • 2009
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of $31.5\;Hz{\sim}500\;Hz$ is more correspondent to psycho-acoustic response than that of measurement frequency of $63\;Hz{\sim}500\;Hz$ which is for KS F 2863-2, existing rating method.

바닥 슬라브의 가진 위치에 따른 차음성능에 관한 연구 (A Study on the Insulation Performance of Impact Sound Level by Striking Location of Floor Slab)

  • 송필동;박명길;함진식
    • 한국주거학회:학술대회논문집
    • /
    • 한국주거학회 2003년도 정기총회 및 추계학술대회
    • /
    • pp.73-76
    • /
    • 2003
  • This paper is contents about method to measure interception performance of shock noise of floor slab of apartment house to be simple. In the case of interception performance of light floor impact sound level, according to measurement method, grade of sound insulation performance showed greatly differently. But, in the case of interception performance of heavy floor impact sound level, it was similar result in all measurement method. Therefore, use of simple method of measurement was examined by possible fact in case of interception performance of heavy floor impact sound level.

  • PDF

주파수 특성 분류를 통한 임팩트 볼 중량충격음의 주관적 평가 (Evaluation of heavy-weight impact sounds generated by impact ball through classification)

  • 김재호;이평직;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1142-1146
    • /
    • 2007
  • In this studies, subjective evaluation of heavy-weight floor impact sound through classification was conducted. Heavyweight impact sounds generated by an impact ball were recorded through dummy heads in apartment buildings. The recordings were classified according to the frequency characteristics of the floor impact sounds which are influenced by the floor structure with different boundary conditions and composite materials. The characteristics of the floor impact noise were investigated by paired comparison tests and semantic differential tests. Sound sources for auditory experiment were selected based on the actual noise levels with perceptual level differences. The results showed that roughness and fluctuation strength as well as loudness of the heavy-weight impact noise had a major effect on annoyance.

  • PDF