• Title/Summary/Keyword: Heating source

Search Result 902, Processing Time 0.023 seconds

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Development of Analysis Model for High-Performance Heat Pump (고성능 히트펌프 해석모델 개발 연구)

  • Yim, Sang-Sik;Kim, Ki-Bum;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6053-6059
    • /
    • 2013
  • Heat pumps have attracted considerable attention as a green energy system because they use renewable energy, such as geothermal, solar energy and waste heat, and can have a low electricity consumption rate compared to other conventional electric heating system. Many studies of high efficient heat pump system design was performed previously,but it is not easy to find any an analytical model that consists of components (e.g. compressor, heat exchangers, and expansion valve), not only having an interrelation and interconnection each other but also being flexible to any change in geometry and operating parameters. In this study, a computational model was developed for a heat pump with warm air as a heat source using the one-dimensional modeling software, AMESim. In combination with an independently-developed analytical model for a scroll compressor, the heat pump model can simulate the physical characteristics and actual behavior of the heat pump precisely. In addition, the reliability of the model was improved by verifying the simulation results using experimental data. The simulation data fell into the 10% error range compared with the experimental data. The heat pump model can be used for system optimization studies of product development and applied to other applications in a range of industrial field.

A study on Optimal Design for the Inductance and Coreloss of Plate Type Induction Heater for Electric Vehicle (전기자동차용 판형 인덕션 히터의 인덕턴스 및 철손 최적설계 연구)

  • Kang, Jun-Kyu;Jo, Byoung-Wook;Kim, Ki-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.425-430
    • /
    • 2018
  • The battery system of an electric vehicle suffers from the problem the battery output and the service life decrease at low temperature. A Positive Temperature Coefficient(PTC) heater is used for maintaining room temperature but is heavy due to a complicated insulation structure. The larger the weight is, the lower the fuel economy of the electric vehicle is. On the other hand a induction heater have a simple insulation structure, which is effective in weight reduction and has a rapid temperature rise. The induction heater consists of an LC resonance circuit. The larger the capacitance is, the higher the price and weight is. Therefore, the inductance should be increased to reduce the capacitance. Also, the main heat source of the induction heater is coreloss. So, it is important to optimize inductance and coreloss in terms of electromagnetic field design. In this paper, the inductance and the coreloss according to the change of the induction heater structure were optimized through the Taguchi method and Finite Element Method(FEM) simulation.

LFG Utilization in Hong Kong (Case study of the Shuen Wan and Urban Landfills)

  • Lloyd, Bryce;Chan, Louis;Nardelli, Ray;Sullivan, Kevin
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2001.05b
    • /
    • pp.85-91
    • /
    • 2001
  • This paper provides a case study of landfill gas (LFG) utilization fer direct use as process fuel, and for electrical power generation at restored landfills in the Hong Kong Special Administrative Region of China (HKSAR). The paper specifically covers the LFG utilization schemes, which are required under landfill restoration contracts at the Shuen Wan and Urban Landfills. These contracts provide for the restoration and aftercare of six landfills, and are administered by the Environmental Protection Department (EPD) of the Hong Kong Government. The LFG utilization scheme at the Shuen Wan Landfill incorporates the direct use of LFG by compressing and dehumidifying the LFG prior to conveyance through a 1.6-kilometer (1-mile) pipeline. The pipeline provides an alternate fuel source to naphtha during process heating for gas production at the Tai Po Gas Production Plant of the Hong Kong and China Gas Limited (HKCC). The LFG utilization scheme at the Jordan Valley Landfill (one of the Urban Landfills) beneficially uses the LFG as fuel for electrical power generation with reciprocating internal combustion engines. The LFG is compressed, cooled, and filtered prior to delivery to two engine/generator sets. This system provides power to operate the leachate pre-treatment plant, which processes leachate from all of the Urban Landfill sites. The case study will examine the technical and non-technical considerations, including harriers, for developing, designing and implementing the LFG utilization projects in Hong Kong. Specific regulatory considerations and external governmental agency approvals are discussed, including the requirement to register as a gas-producing utility. While the paper focuses on LFG utilization applications in Hong Kong, many of the considerations discussed are also applicable to development of LFG utilization in other regions of Asia.

  • PDF

A Study on Analysis of Energy Consumption of a High School Facilities in Korea (전국 고등학교 시설의 에너지 사용실태 분석 연구)

  • Yoon, Jong-Ho;Shin, U-Cheul;Cho, Jin-Il;Kim, Hyo-Jung;Lee, Chul-Sung
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.55-62
    • /
    • 2010
  • The purpose of this study is to present various analysis result of energy consumption that is a statistical analysis of high school facilities in Korea for setting the goal of energy saving. This study enforced analysis after it provided used energy consumption for the year 2008 and general in formation from 2202 high school facilities in 16 cities in South Korea by the relevant agency. Consequently, it represents that the average energy consumption of electric power was 428.7MWh(65.7%), gas consumption for heating was 129.5MWh(19.8%), oil consumption was 84.6MWh(13.0%), district energy was 10.0MWh(1.5%) in nation after changing as unit 'kWh' only for comparison with every energy source. This result describes that consumption of electric power was large greatly and it reflects the expectation that it will climb the demand regarding this energy in the future. In additionally, it analyzed average energy consumption with $98.3kWh/m^2$ by the unit area of air-conditioning and the district which has large energy consumption was Gyeonggi-do with $115.9kWh/m^2$. Furthermore, it described the average energy consumption of $60.8kWh/m^2$ by the unit area of floor area and the average energy consumption of a student analyzed with 1157.0kWh.

Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System (지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발)

  • Shin, Ho-Sung;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.65-73
    • /
    • 2013
  • Ground-coupled heat pump system has attracted attention as a promising renewable energy technology due to its improving energy efficiency and eco-friendly mechanism for space cooling and heating. Pipes buried in the ground play a role of direct thermal interaction between circulating fluid inside the pipe and surrounding soils in the geothermal exchange system. However, both complexities of turbulent flow coupling thermal-hydraulic phenomena and very long aspect ratio of the pipe make it difficult to model the heat exchange system directly. Energy balance for fluid flow inside the pipe was derived to model thermal-hydraulic phenomena, and one-dimensional pipe element was proposed through Galerkin formation and time integration of the equation. Developed element is combined to pre-developed FEM code for THM phenomena in porous media. Numerical results of Thermal Response Test showed that line-source model overestimates equivalent thermal conductivity of surrounding soils due to thermal interaction between adjacent pipes and finite length of the pipe. Thus, inverse analysis for the TRT simulation was conducted to present optimal transformation matrix with utmost convergence.

Production of Plant Protein Concentrate and Yeast Biomass from Radish Greens (무청즙액을 이용한 녹엽단백질과 효모균체의 생산)

  • Rhee, Yeong-Sang;Kyung, Kyu-Hang;Yoo, Yang-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.3
    • /
    • pp.263-269
    • /
    • 1992
  • Radish green juice was used as a dual source for the production of plant protein precipitate and Candida utilis biomass. Precipitates ranging from 10.0 to 16.5g were obtained from a liter of radish green juice by heating at 80-10$0^{\circ}C$C for 1 to 10 min or by modification of the pH of radish green juice. Crude protein content of the precipitate was between 25 and 38%. The residue remaining after protein precipitation was used in turn for the cultivation of the yeast, C. utilis, in order to produce yeast biomass. C. utilis grew well in radish green residual juice and completed growth within 24 hr at 3$0^{\circ}C$ and 200rpm in shake flask experiments. Maximum dry cell weight obtainable from a liter of radish green residual juice was 19.5g, when the yeast was grown on the juice residue diluted 3 times or more with water to make sugar content be equal to or less than about 1.0%. Supplementation of 3-fold diluted radish green residual juice with yeast extract and (NH$_4$)SO$_4$ enhanced yeast biomass production and cell protein content significantly. Total high protein material obtainable from a liter of radish green juice was 33.0g.

  • PDF

Development of equipment for tumor cauterization

  • Hoshino, Hirokazu;Ochiai, Makoto;Sakasegawa, Aya;Hayakawa, Yoshinori
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.474-477
    • /
    • 2002
  • Equipment to cauterize tumors by an electrically heated Kanthal wire is under development. The wire( alloy of iron, chromium and Aluminum) keeps sufficient strength up to 1400 degrees in Celsius. Although AC 50Hz current source is used in the prototype experiment, RF current will be used in future. The diameter of the Kanthal wire was 0.3 mm which was connected to Kanthal wire of 0.8 mm. The thicker wire was used as a leading wire. The possibility of application of the heating wire in combination with an ultrasound endoscope was determined, where ultrasound endoscope is to be used to monitor the location on the wire and an extent of a tumor in digestive organs. This procedure requires the wire to be applied inside ultrasound transmitting media. First, the wire was applied in the degassed water in which a chicken liver sample was submerged. The wire, however, burned out in water soon after it became red-hot at 12 A. The reason is that large current is required for the wire to become red-hot due to strong convection. Starch paste of 3 weight percent was employed instead of water. This made the wire red-hot approximately at 6 A, showing the increased viscosity of the starch decreased the convection and the wire was cover by the steam. The liver sample was cauterized successively, while the location of the wire and the liver was monitored by an ultrasound diagnosis equipment outside the plastic vessel of the starch paste.

  • PDF

Low-enthalpy geothermal exploration in Pohang area, Korea

  • Song Yoonho;Lee Seong Kon;Kim Hyoung Chan;Kee Weon-Seo;Park Yeong-Sue;Lim Mu-Taek;Son Jeong-Sui;Cho Seong-Jun;Lim Seong-Keun;Uchida Toshihiro;Mitsuhata Yuji;Lee Tae Jong;Lee Heuisoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.470-475
    • /
    • 2003
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-enthalpy geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating from KORP (Korea Research Council of Public Science & Technology) funding. Surface geologic and geophysical surveys including Landsat TM image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT) and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. By the end of 2003, two test wells of 1 km depth will be drilled and various kinds of borehole survey along with additional MT measurements and sample analysis will follow and then the detailed subsurface condition is to be characterized. Next step would be drilling the production well of 2 km depth and all further steps remain to be determined depending upon the results of the test well studies.

  • PDF

Analysis of Children's Constructing and Interpreting of a Line Graph in Science (초등학생들의 과학 선 그래프 작성 및 해석 과정 분석)

  • Yang, Su Jin;Jang, Myoung-Duk
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.3
    • /
    • pp.321-333
    • /
    • 2012
  • The purpose of this study was to examine elementary school students' characteristics and difficulties in drawing and interpreting a line graph, and to present educational implications. Twenty five students(4th grader: 6, 5th grader: 9, and 6th grader: 10) at an elementary school participated in this study. We used a student's task which was about graphing on a given data table and interpreting his/her graph. The data table was on heating 200mL and 500mL of water and measuring their temperature at regular time intervals. We collected multiple source of data, and data analyzed based on the sub-variables of TOGS. The some results of this study are as follows: First, five children (20.0%), especially two of 10 sixth graders (20.0%), could not construct a line graph about a given data table. Second, twenty students (80.0%) had the ability on 'Scaling axes' and on 'Assigning variables to the axes', however, only a student understood why the time is on the longitudinal axis and the temperature is on the vertical axis. Third, in the case of 'Plotting points', twelve children (48.0%) could drew two graphs on a coordinate. Fourth, in the case of 'Selecting the corresponding value for Y (or X)', twenty student had little difficulty. on 'Describing the relationship between variables', seventeen students (68.0%) understood the relationship between time and temperature of water, and the relationship between temperature and amount of water. Finally, eleven students (44%) had the ability on 'Interrelating and extrapolation graphs.' Educational implications are also presented in this paper.