• Title/Summary/Keyword: Heating effect

Search Result 2,292, Processing Time 0.032 seconds

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System (고설 딸기 관부 난방시스템의 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kwon, Jin Kyung;Kang, Youn Koo;Lee, Jae Han;Kim, Hyung Gweon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.420-428
    • /
    • 2019
  • This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

A Study on Effect of Capture Volume in a Cavity on Direct Containment Heating Phenomena

  • Chung, C.Y.;Kim, M.H.;Lee, H.Y.;Kim, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.290-298
    • /
    • 1996
  • Direct Containment Heating, DCH, is supposed to occur during a core melt-down accident if the primary system pressure is still high at the time of vessel breach in a Nuclear Power Plant (NPP). In this case, DCH is considered to be one of very important severe phenomena during postulated severe accident scenario because of the fast heat transfer rate to atmosphere and the sharp pressure increase in a containment. To reduce the effect of this DCH phenomena, the capture volume wes designed at Ulchin NPP units 3 and 4. But, the effect of this has not been studied extensively. This work consists of experimental and numerical analyses of the effects of capture volume in the cavity on DCH phenomena. The experimental model is a 1/30 scaled-down model of Ulchin NPP units 3 and 4. We used three types of capture volumes to investigate the effect of size. Numerical analysis using CONTAIN 1.2 is performed with the correlation for the dispersed fraction of molten corium from the cavity into the containment derived from the experimental data to examine the effect of capture volume on DCH phenomena in full scale of Ulchin NPP units 3 and 4.

  • PDF

Comparison of Heating Behavior of Various Susceptor-embedded Thermoplastic Polyurethane Adhesive Films via Induction Heating (다양한 발열체가 분산된 폴리우레탄 접착 필름의 유도가열 거동 비교)

  • Kwon, Yongsung;Bae, Duckhwan;Shon, MinYoung
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The effect of nanoscopic and microscopic Fe, $Fe_3O_4$, and Ni particles and their shapes and substrate materials on the heating behavior of thermoplastic polyurethane (TPU) adhesive films was investigated via induction heating. The heat generation tendency of $Fe_3O_4$ particles was higher than that shown by Fe and Ni particles in the TPU adhesive films. When the Fe and Ni particle size was larger than the penetration skin depth, the initial heating rate and maximum temperature increased with an increase in the particle size. This is attributed to the eddy current heat loss. The heating behavior of the TPU films with Ni particles of different shapes was examined, and different hysteresis heat losses were observed depending on the particle shape. Consequently, the flake-shaped Ni particles showed the most favorable heat generation because of the largest hysteresis loss. The substrate materials also affected the heating behavior of the TPU adhesive films in an induction heating system, and the thermal conductivity of the substrate materials was determined to be the main factor affecting the heating behavior.

Preparation and Heating Characteristics of N-doped Graphite Fiber as a Heating Element (질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성)

  • Kim, Min-Ji;Lee, Kyeong Min;Lee, Sangmin;Yeo, Sang Young;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.80-86
    • /
    • 2017
  • In this study, nitrogen functional groups were introduced on graphite fiber (GF) to modify their electrical properties, and heating properties were investigated according to the treatment conditions. GF was prepared by a thermal solid-state reaction at $200^{\circ}C$ for 2 h. Surface properties of the nitrogen doped GF were examined by XPS, and its resistance and heating temperature were measured using a programmable electrometer and thermo-graphic camera, respectively. The XPS result showed that the nitrogen functional groups on the GF surface were increased with increasing of urea contents, and the heating property of the GF was also improved as nitrogen functional groups were introduced. The maximum heating temperature of GF treated by urea was $53.8^{\circ}C$ at 60 V, which showed 55% improved heating characteristics compared to that of non-treated GF. We ascribe this effect to introduced nitrogen functional groups on the GF surface by thermal solid-state reaction, which significantly affects the heating characteristics of GF.

Studies on the Processing of Crude Drugs(IX) -Preparing Standardization and Regulation of Stir-Frying Glycyrrhzia root(1)- (한약수치에 관한 연구(제 9보) -초감초(炒甘草) 제법의 표준화 및 규격화(1)-)

  • Choi, Hyuck-Jai;Lee, Woo-Jung;Park, Sung-Hwan;Song, Bo-Whan;Kim, Dong-Hyun;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.3 s.142
    • /
    • pp.209-219
    • /
    • 2005
  • In this study, we carried out the preparing standardization and regulation of processed Glycyrrhizae Radix (PGR) which have been widely used in oriental medicines. Glycyrrhizae Radix(GR) have been generally prepared by the stir-frying, or mix-frying with honey for the purpose of decreasing sweetness and augmenting vitality. Firstly, we tried to standardize PGR prepared by the stir-frying. We purchased 14 kinds of PGR and non-processed GR(NPGR) at oriental physician's offices and oriental pharmacies on a nation scale, respectively. The amounts of dry on loss, water extract, diluted ethanol extract, ether extract, total ash, acid insoluble ash, glycyrrhizin(GL), glycyrrhetic acid(GA) and liquiritin(LQ) of them were examined. The amounts of dry on loss, GL and LQ in commercial PGRs showed remarkable decrease, while GA showed increased as compared with NPGR. In order to standardize preparing method of PGR, the effect of heating time on physico-chemical parameters and biological activities were examined. Physico-chemical parameters such as dry on loss, extract amount, GL and LQ contents in PGRs showed decrease, however, GA was increased with heating time as compared with NPGR. Also, GA, obtained from heat-treated GR, was found as an artifact in PGRs. PGR was more effective than NPGA in vitro test of DPPH scavenging effect and TBA-Rs reducing effect. PGR and NPGR showed potent hepatoprotective effect on $CCl_4-intoxicated$ rats. Especially, PGR prepared by 80 min of heating was the most effective. Considering these results, the optimal condition for PGR preparation was $150^{\circ}C$ for 80 min.

Improvement of Birefringence Characteristics of Injection-Molded Plastic Parts by Rapid Heating (급속 가열에 의한 사출성형품의 복굴절특성 개선)

  • Park, Keun;Kim, Byung-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.195-198
    • /
    • 2007
  • The present work focuses on the prediction of birefringence in injection-molded plastic part and its improvement by rapid mold heating. To calculate birefringence, flow-induced residual stress is computed through a fully three-dimensional injection molding analysis. Then the stress-optical law is applied from which the order of birefringence can be evaluated and visualized. The birefringence patterns are predicted for a rectangular plate with a variation of mold temperatures, which shows that the amount of molecular orientation and birefringence level decreases with an increase of mold temperature. The effect of mold temperature on the order of birefringence is also studied for a thin-walled rectangular strip, and compared with experimental measurements. Both predicted and experimental patterns of birefringence are in agreements on the observation that the birefringence level diminishes significantly when the mold temperature is raised to above the glass transition temperature.

  • PDF

Nanoinjection Molding Process with Passive Heating System for Patterned Magnetic Media (패턴드 미디어 제작을 위한 나노 사출성형 공정에 관한 연구)

  • Choi, Eui-Sun;Lee, Nam-Seok;Han, Jeong-Won;Kim, Young-Joo;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.149-153
    • /
    • 2007
  • Perpendicular patterned magnetic media have been regarded as a prime candidate to achieve an ultra-high magnetic recording density of over 1 Tera-bits/$inch^2$. Patterned magnetic media with nanoscale patterns have been fabricated using various nanopatterning technologies. We focused on the two technical issues of nanoinjection molding technology. Firstly, we have investigated a cost-effective method to fabricate metallic stamps. Secondly, we focused on the analysis of nanoinjection molding with passive heating, where the replication of 50 nm nanopillar arrays was successful. The effect of the thermal insulation layer on the replication quality was examined by analytical and experimental methods. Finally, we deposited a magnetic layer on a injection molded nanopillars and measured. Our methodology can provide cost-effective mass-production for patterned magnetic media.

  • PDF

A Study on the Effect of Envelope Factors on Cooling, Heating and Lighting Energy Consumption in Office Building (사무소 건물의 외피요소가 냉난방 및 조명에너지 소비에 미치는 영향에 관한 연구)

  • Son, Chang-Hee;Yang, In-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.8-17
    • /
    • 2012
  • The objective of this study is to perform an analysis of the heat(heating and cooling) and lighting energy consumption according to the window area ratio and the application of horizontal louver, which is external shading device installed for the purpose of energy savings in office buildings. For this, a building was chosen as a typical example, and the heat and lighting energy consumption was calculated by using the daylight and building energy analysis simulation. The results showed that the total energy consumption, when the lighting control was applied, was reduced by an average of 11.49[%] compared to when there was no lighting control. The smaller the glazing ratio is, the less the total energy consumption is. Also, the application of the horizontal louver increases the total energy consumption under the same condition of glazing ratio.

A Study on the Influence Factor in Measuring the Dynamic Stiffness and Loss Factor of Damping Materials (완충재의 동탄성 및 손실계수 측정 시 영향인자에 관한 연구)

  • Lee, S.H.;Jeong, G.C.;Chung, J.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.279-282
    • /
    • 2005
  • The aim of this study is to suggest the method of measuring the dynamic stiffness and loss factor of materials used under floating floors in the dwelling by korea standard (KS F 2868). According to the results, the amplitude change of an impact source have no effect on the variation of the dynamic stiffness and loss factor. Comparing with the heating before, heating makes lower the dynamic stiffness except the EPS. In EVA material, the loss factor is increased by heating.

  • PDF

The Effect of Various Molding Methods for Precision Optical Products Using Birefringence Analysis (정밀 광학부품의 복굴절 분석을 통한 각종 성형법의 영향에 관한 연구)

  • Min, I.K.;Cho, S.W.;Yoon, K.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • As the adoption of injection molding technology increases, injected-molded optical products require higher dimensional accuracy and optical stability than ever before. In the present study, four kinds of molding methods, i.e., conventional injection molding (CIM), injection/compression molding (ICM), rapid heat and cooling the mold(RHCM) and rapid injection/compression molding (RICM) were selected in order to investigate the optical anisotropy of a 7 inch Light Guide Plate(LGP) by examining the gap-wise distribution of birefringence and the extinction angle. The results indicate that the compression process can decrease flow-induced birefringence over the whole region and that rapid heating can decrease the birefringence level better than conventional molding. In addition, for the combination of compression and rapid heating a reversal flow was detected from the distribution of the extinction angle near the gate.