DOI QR코드

DOI QR Code

Energy Saving Effect for High Bed Strawberry Using a Crown Heating System

고설 딸기 관부 난방시스템의 에너지 절감 효과

  • Moon, Jong Pil (Protected Horticulture Research Institute, National Institute of Horticulture and Herbal Science, RDA) ;
  • Park, Seok Ho (Protected Horticulture Research Institute, National Institute of Horticulture and Herbal Science, RDA) ;
  • Kwon, Jin Kyung (Department of Energy and Environment, National institute of Agriclutural Science, RDA) ;
  • Kang, Youn Koo (Protected Horticulture Research Institute, National Institute of Horticulture and Herbal Science, RDA) ;
  • Lee, Jae Han (Protected Horticulture Research Institute, National Institute of Horticulture and Herbal Science, RDA) ;
  • Kim, Hyung Gweon (Department of Energy and Environment, National institute of Agriclutural Science, RDA)
  • 문종필 (국립원예특작과학원 시설원예연구소) ;
  • 박석호 (국립원예특작과학원 시설원예연구소) ;
  • 권진경 (국립농업과학원 에너지환경공학과) ;
  • 강연구 (국립원예특작과학원 시설원예연구소) ;
  • 이재한 (국립원예특작과학원 시설원예연구소) ;
  • 김형권 (국립농업과학원 에너지환경공학과)
  • Received : 2019.08.30
  • Accepted : 2019.10.14
  • Published : 2019.10.30

Abstract

This study is the heating energy saving test of the high-bed strawberry crown heating system. The system consists of electric hot water boiler, thermal storage tank, circulation pump, crown heating pipe(white low density polyethylene, diameter 16mm) and a temperature control panel. For crown heating, the hot water pipe was installed as close as possible to the crown part after planting the seedlings and the pipe position was fixed with a horticultural fixing pin. In the local heating type, hot water at $20{\sim}23^{\circ}C$ is stored in the themal tank by using an electric hot water boiler, and crown spot is partially heated at the setting temperature of $13{\sim}15^{\circ}C$ by turning on/off the circulation pump using a temperature sensor for controlling the hot water circulation pump which was installed at the very close to crown of strawberry. The treatment of test zone consisted of space heating $4^{\circ}C$ + crown heating(treatment 1), space heating $8^{\circ}C$(control), space heating $6^{\circ}C$ + crown heating(treatment 2). And strawberries were planted in the number of 980 for each treatment. The heating energy consumption was compared between November 8, 2017 and March 30, 2018. Accumulated power consumption is converted to integrated kerosene consumption. The converted kerosene consumption is 1,320L(100%) for space $8^{\circ}C$ heating, 928L(70.3%) for space $4^{\circ}C$ + crown heating, 1,161L($88^{\circ}C$) for space $6^{\circ}C$ + crown heating). It was analyzed that space $4^{\circ}C$ + pipe heating and space $6^{\circ}C$ + crown heating save heating energy of 29.7% and 12% respectively compared to $8^{\circ}C$ space heating(control).

본 연구에서는 고설 딸기 관부(크라운부) 난방시스템을 전기 온수 보일러, 축열조, 순환 펌프, 관부난방 배관(백색 연질 PE관, 관경 16mm) 및 온도 제어반으로 구성하였다. 관부(크라운부) 난방의 경우 난방 배관을 딸기 관부에 최대한 밀착될 수 있도록 설치하고 배관 위치를 원예용 고정핀으로 고정하였다. 또한 관부 난방시스템의 에너지 효율을 증진하기 위해 축열조 온수 온도를 $20{\sim}23^{\circ}C$, 관부 온도를 $13{\sim}15^{\circ}C$로 관리하였다. 관부난방은 전기 온수보일러를 이용하여 $20{\sim}23^{\circ}C$의 온수를 축열조에 저장하고 순환펌프를 제어하기 위한 온도 센서를 딸기의 관부에 최대한 근접하여 설치하고 온도를 감지함으로써 관부(크라운부)를 집중적으로 난방하는 방식이다. 시험 온실의 난방 처리는 공간 난방 $4^{\circ}C$ + 관부난방(처리 1), 공간 난방 $8^{\circ}C$ (대조구), 공간 난방 $6^{\circ}C$ + 관부난방(처리 2)로 처리하였다. 각 난방처리는 온실 1동에 딸기를 980주를 심었으며, 재배방법은 표준재배법에 준해서 재배하였다. 난방 에너지 소비에 대한 비교시험은 2017년 11월 8일부터 2018년 3월 30일까지 수행되었다. 소비된 누적 전력량은 등유 사용량으로 환산하였고, 등유 소비량은 공간난방 $8^{\circ}C$(대조구)의 경우 1,320L(100%), 공간난방 $4^{\circ}C$ + 관부난방의 경우 928L(70.3%), 공간난방 $6^{\circ}C$ + 관부난방의 경우 1,161L (88%)로 계측되었다. 공간난방 $4^{\circ}C$ + 관부난방(처리 1) 및 공간난방 $6^{\circ}C$ + 관부난방(처리 2)은 $8^{\circ}C$ 공간난방(대조구)에 비해 생육 저하, 수확시기의 지연 등이 없이 비슷하게 딸기 수확이 가능하였으며, 29.7% 및 12%의 난방 에너지가 절감되는 것으로 분석되었다.

Keywords

References

  1. Cho, I. H., Y. H. Woo., H. Nishina, and Y. Hashimoto, 1994. Studies on zone cooling of greenhouse in the daytime in summer and occurrence of blossom-end rot in tomato plants. Journal of Biological Production Facilities & Environmental Control 3:36-41. (in Korean)
  2. Choi, K. Y., J. Y. Ko, E. Y. Choi, H. C. Rhee, S. E. Lee, and Y. B. Lee. 2013. The effect of root zone cooling at night on substrate temperature and physiological response of paprika in hot climate, Protected Horticulture and Plant Factory 22:349-354. (in Korean) https://doi.org/10.12791/KSBEC.2013.22.4.349
  3. Jun, H. J., J. G. Hwang, M. J. Son, and D. J. Choi. 2008. Effect of root zone temperature on root and shoot growth of strawberry, Journal of Bio-Environment Control 17:14-19. (in Korean)
  4. Kawasaki, Y., K. Suzuki, K. Yasuba, and M. Takaichi. 2011. Effect of local air heating by a hanging duct near the tomato shoot apex and flower clusters on vertical temperature distribution? fruit yield and fuel consumption. Hort. Res. 10:395-400. (In Japanese) https://doi.org/10.2503/hrj.10.395
  5. Kim, K. D., Y. S. Ha, K. M. Lee, D. H. Park, S. G. Kwon, J. M. Park, and S. W. Chung. 2010a. Development of temperature control technology of root zone using evaporative cooling methods in the strawberry hydroponics, Journal of Bio-Environment Control 19:183-188. (in Korean)
  6. Kim, K. D., Y. S. Ha, K. M. Lee, D. H. Park, S. H. Kwon, W. S. Choi, and S. W. Chung.2010b. Development of temperature control technology of root zone using multi-line heating methods in the strawberry hydroponics, Journal of Bio-Environment Control 19:189-194. (in Korean)
  7. Kim, T. Y., Y. H. Woo, I. H. Cho, K. D. Kim, and J. W. Lee. 2002. Effects of energy saving on partial heating for pot flower bench cultivation, Proceedings of the 2002 Annual Conference of the Korean Society for Bio-Environment Control 44-47. (in Korean)
  8. KoJi, M. 2012. Energy saving warming technology for strawberry cultivation. Information Corner(Vegetable Information June 2012 Issue) Fukuoka Prefecture Agricultural Experiment Station Vegetable Department(https://vegetable.alic.go.jp/yasaijoho/joho/1206/joho01.html)
  9. Lee, K. J., Y. C. Kwon, C. K. Chun, S. J. Park, J. T. Kwon, and C. Huh. 2011. Experimental study on heating performance characteristics of air source heat pump with air to water type, Journal of Air-Conditioning and Refrigeration Engineering 23:400-405. (in Korean) https://doi.org/10.6110/KJACR.2011.23.6.400
  10. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2018. Greenhouse status for the vegetable grown in facilities and the vegetable productions in 2017 ed. Sejong, Korea. (in Korean)
  11. Ministry of Agriculture, Food and Rural Affairs(MAFRA). 2018. Principal statistics for agriculture, forestry, livestock and food in 2017 ed. Sejong, Korea. (in Korean)
  12. Moon, J. P., G. C. Kang, J. K. Kwon, S. J. Lee, and J. N. Lee. 2014. Spot cooling system development for ever-bearting strawberry by using low density polyethylene pipe. Journal of The Korean Society of Agricultural Engineers 56: 149-158. (in Korean) https://doi.org/10.5389/KSAE.2014.56.6.149
  13. Moon, j. p., G. C. Kang, J. K. Kwon, Y. Paek, T. S. Lee, S. S. Oh, and M. H. Nam. 2016. Spot heating technology development for strawberry cultivated in a greenhouse by using hot water pipe, Journal of The Korean Society of Agricultural Engineers 58:71-79. (in Korean)
  14. Nam, S. W. 2002. Estimation of soil cooling load in the root zone of greenhouses, Journal of Bio-Environment Control 11:151-156. (in Korean)
  15. Nam, S. W., Y. S. Kim, and D. U. Seo. 2014. Change in the plant temperature of tomato by fogging and airflow in plastic greenhouse, Protected Horticulture and Plant Factory 23:11-18. (in Korean) https://doi.org/10.12791/KSBEC.2014.23.1.011
  16. Park, J. W., Y. S. Ha, K. D. Kim, D. H. Park, K. M. Lee, H. J. Jun, S. G. Kwon, W. S. Choi, and S. W. Chung. 2010. Modeling of medium temperature drops of the elevated-bench hydroponics for strawberry cultivation during low temperature season, Journal of Bio-Environment Control 19:123-129. (in Korean)
  17. Rural Development Administration, National Institute of Agricultural Sciences. 2015. Design standards for greenhouse environment, Wanju, Jeollabukdo, Korea. (in Korean)