DOI QR코드

DOI QR Code

Preparation and Heating Characteristics of N-doped Graphite Fiber as a Heating Element

질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성

  • Kim, Min-Ji (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Kyeong Min (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Sangmin (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Yeo, Sang Young (Korea Institute of Industrial Technology (KITECH)) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김민지 (충남대학교 응용화학공학과) ;
  • 이경민 (충남대학교 응용화학공학과) ;
  • 이상민 (충남대학교 응용화학공학과) ;
  • 여상영 (한국생산기술연구원) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Received : 2016.11.21
  • Accepted : 2016.12.03
  • Published : 2017.02.10

Abstract

In this study, nitrogen functional groups were introduced on graphite fiber (GF) to modify their electrical properties, and heating properties were investigated according to the treatment conditions. GF was prepared by a thermal solid-state reaction at $200^{\circ}C$ for 2 h. Surface properties of the nitrogen doped GF were examined by XPS, and its resistance and heating temperature were measured using a programmable electrometer and thermo-graphic camera, respectively. The XPS result showed that the nitrogen functional groups on the GF surface were increased with increasing of urea contents, and the heating property of the GF was also improved as nitrogen functional groups were introduced. The maximum heating temperature of GF treated by urea was $53.8^{\circ}C$ at 60 V, which showed 55% improved heating characteristics compared to that of non-treated GF. We ascribe this effect to introduced nitrogen functional groups on the GF surface by thermal solid-state reaction, which significantly affects the heating characteristics of GF.

본 연구에서는 흑연섬유(GF)의 전기적 특성을 변화시키기 위하여 질소관능기 도입을 실시하였고, 처리조건에 따라 흑연섬유의 발열성능을 평가하였다. 흑연섬유는 $200^{\circ}C$에서 2 h 동안 열-고상반응법으로 처리되었다. 질소도핑 된 흑연섬유의 표면특성은 XPS로 조사되었으며, 저항 및 발열온도는 전위계 시스템과 열화상카메라를 이용하여 측정하였다. XPS 결과 우레아 함량이 증가함에 따라 흑연섬유 표면의 질소관능기가 증가하였으며, 이 질소관능기가 도입됨에 따라서 흑연섬유의 발열특성이 또한 향상되었다. 우레아 처리된 흑연섬유의 최대 발열온도는 60 V에서 $53.8^{\circ}C$로 나타났으며, 이는 미처리 흑연섬유와 비교하여 발열특성이 약 55% 향상됨을 알 수 있었다. 이러한 효과는 열고상반응법에 의해서 흑연섬유 표면에 도입된 질소관능기 때문에 기인한 것으로, 이는 흑연섬유의 열적 특성에 상당히 영향을 주었다.

Keywords

References

  1. Y. C. Suh, B. S. Seo, J. K. Song, and N. H. Cho, A study on field applicability of underground electric heating mesh, J. Korean Soc. Road Eng., 15, 19-27 (2013).
  2. K. l. Han, D. H. Cho, and A. H. Lee, A study on snow melting system for the anti-freezing testing road, J. Korean Soc. Power Syst. Eng., 10, 34-40 (2006).
  3. S. J. Rees, J. D. Spitler, and X. Xiao, Transient analysis of snow-melting system performance, ASHRAE Trans., 108, 406-423 (2002).
  4. J. H. Kim, J. H. Kim, and G. T. Lee, Design of road snow melting system using piping system, Korean J. Air-Cond. Refrig. Eng., 6, 1251-1255 (2009).
  5. D. I. Choi and K. I. Hwang, An evaluation and prediction of performance of road snow-melting system utilized by ground source heat pump, J. Korean Sol. Energy Soc., 32, 138-145 (2012). https://doi.org/10.7836/kses.2012.32.3.138
  6. D. I. Choi, J. H. Kim, and K. I. Hwang, A performance estimation of ground source heat pump system used both for heating and snow-melting, Trans. Korea Soc. Geotherm. Energy Eng., 8, 7-12 (2012).
  7. Y. H. Kim, J. W. Lee, C. W. Park, and S. J. Park, Thermal characteristics of hybrid composites for application to surfboard, J. Ocean Eng. Technol., 28, 351-355 (2014). https://doi.org/10.5574/KSOE.2014.28.4.351
  8. H. J. Ahn, S. H. Kim, and S. K. Choi, An experimental study on electric resistivity and exothermic property of electrically conductive mortar using amorphous graphite, J. Korea Inst. Build. Constr., 16, 247-255 (2016). https://doi.org/10.5345/JKIBC.2016.16.3.247
  9. K. E. Choi, C. H. Park, and M. K. Seo, Electrical and resistance heating properties of carbon fiber heating element for car seat, Appl. Chem. Eng., 27, 210-216 (2016). https://doi.org/10.14478/ace.2016.1018
  10. K. Chu, D. J. Yun, D. Kim, H. Park, and S. H. Park, Study of electric heating effects on carbon nanotube polymer composites, Org. Electron., 15, 2734-2741 (2014). https://doi.org/10.1016/j.orgel.2014.07.043
  11. M. H. Jee, J. H. Lee, I. S. Lee, and D. H. Baik, Electrical properties and heating performance of polyurethane hybrid nanocomposite films containing graphite and MWNTs, Text. Sci. Eng., 50, 108-114 (2013). https://doi.org/10.12772/TSE.2013.50.108
  12. M. Kim, K. Kong, N. Kim, H. W. Park, O. Park, Y. B. Park, M. Jung, S. H. Lee, and S. G. Kim, Experimental and numerical study of heating characteristics of discontinuous carbon fiber-epoxy composites, J. Korean Soc. Compos. Mater., 26, 72-78 (2013).
  13. N. Athanasopoulos and V. Kostopoulos, Resistive heating of multidirectional and unidirectional dry carbon fibre preforms, Compos. Sci. Technol., 72, 1273-1282 (2012). https://doi.org/10.1016/j.compscitech.2012.04.018
  14. A. E. Zantout and O. I. Zhupanska, On the electrical resistance of carbon fiber polymer matrix composites, Composites A, 41, 1719-1727 (2010). https://doi.org/10.1016/j.compositesa.2010.08.010
  15. R. Rudolf, P. Mitschang, and M. Neitzel, Induction heating of continuous carbon-fibre-reinforced thermoplastics, Composites A, 31, 1191-1202 (2000). https://doi.org/10.1016/S1359-835X(00)00094-4
  16. D. Pyo, S. Eom, Y. S. Lee, and S. Ryu, Exothermic characteristics of PAN-based carbon fiber according to high temperature treatment, Korean Chem. Eng. Res., 49, 218-223 (2011). https://doi.org/10.9713/kcer.2011.49.2.218
  17. B. J. Kim, W. K. Choi, M. K. Um, and S. J. Park, Effects of nickel coating thickness on electric properties of nickel/carbon hybrid fibers, Surf. Coat. Technol., 205, 3416-3421 (2011). https://doi.org/10.1016/j.surfcoat.2010.12.007
  18. M. S. Park, K. J. Yun, and Y. S. Lee, Electromagnetic interference shielding efficiency characteristics of ammonia-treated graphene oxide, Appl. Chem. Eng., 25, 613-618 (2014). https://doi.org/10.14478/ace.2014.1105
  19. Y. Liu, T. Chen, T. Lu, Z. Sun, D. H. C. Chua, and L. Pan, Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization, Electrochim. Acta, 158, 403-409 (2015). https://doi.org/10.1016/j.electacta.2015.01.179
  20. G. Rasines, P. Lavela, C. Macías, M. C. Zafra, J. L. Tirado, J. B. Parra, and C. O. Ania, N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions, Carbon, 83, 262-274 (2015). https://doi.org/10.1016/j.carbon.2014.11.015
  21. J. J. Yang, Y. J. Choi, H. J. Kim, Y. J. Yuk, and S. G. Park, Electrochemical characteristics of reforming activated carbon with nitrogenous functional group for electric double layer capacitor, J. Korean Electrochem. soc., 16, 65-69 (2013). https://doi.org/10.5229/JKES.2013.16.2.65
  22. J. H. Kim, S. Cho, T. S. Bae, and Y. S. Lee, Enzyme biosensor based on an N-doped activated carbon fiber electrode prepared by a thermal solid-state reaction, Sens. Actuators B, 197, 20-27 (2014). https://doi.org/10.1016/j.snb.2014.02.054
  23. Z. Mou, X. Chen, Y. Du, X. Wang, P. Yang, and S. Wang, Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea, Appl. Surf. Sci., 258, 1704-1710 (2011). https://doi.org/10.1016/j.apsusc.2011.10.019
  24. L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, M. Li, and H. Fu, Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage, RSC Adv., 2, 4498 (2012). https://doi.org/10.1039/c2ra01367c
  25. J. Kim, Y. K. Kwon, J. K. Lee, and H. S. Choi, Influence of oxygen-/nitrogen-containing functional groups on the performance of electrical double-layer capacitor, Korean Chem. Eng. Res., 50, 1043-1048 (2012). https://doi.org/10.9713/kcer.2012.50.6.1043
  26. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015). https://doi.org/10.14478/ace.2015.1050
  27. N. Diez, P. Alvarez, M. Granda, C. Blanco, R. Santamaria, and R. Menendez, N-enriched ACF from coal-based pitch blended with urea-based resin for $CO_2$ capture, Microporous Mesoporous Mater., 201, 10-16 (2015). https://doi.org/10.1016/j.micromeso.2014.08.054
  28. J. Chen, Y. Zhai, H. Chen, L. C, G. Zeng, D. Pang, and P. Lu, Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon, Appl. Surf. Sci., 263, 247-253 (2012). https://doi.org/10.1016/j.apsusc.2012.09.038
  29. Y. Kim, S. Cho, S. K. Park, J. D. Jeon, and Y. S. Lee, Electrochemical properties of carbon felt electrode for vanadium redox flow batteries by liquid ammonia treatment, Appl. Chem. Eng., 25, 292-299 (2014). https://doi.org/10.14478/ace.2014.1030
  30. M. Seredych, D. Hulicova-Jurcakova, G. O. Lu, and T. J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475-1488 (2008). https://doi.org/10.1016/j.carbon.2008.06.027
  31. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, Effect of simultaneous etching and N-doping on the surface and electro-chemical properties of AC, J. Ind. Eng. Chem., 18, 116-122 (2012). https://doi.org/10.1016/j.jiec.2011.11.074
  32. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang, and Y. Lin, Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries, J. Power Sources, 195, 4375-4379 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.015
  33. N. D. Kim, W. Kim, J. B. Joo, S. Oh, P. Kim, Y. Kim, and J. Yi, Electrochemical capacitor performance of N-doped mesoporous carbons prepared by ammoxidation, J. Power Sources, 180, 671-675 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.055
  34. J. W. Kim, Y. S. Choi, K. S. Lee, S. Y. Cho, and J. S. Hwang, Analysis of electrical properties for optimal operating conditions of mono-crystalline Si solar cell, J. Korean Inst. Electr. Electron. Mater. Eng., 24, 654-658 (2011).
  35. H. J. Park, M. S. Yun, and C. S. Chung, A proposed high voltage distribution system of the customer inside for reducing power loss, J. Korean Inst. Illum. Electr. Install. Eng., 19, 39-44 (2005).

Cited by

  1. Nitrate removal from water phase using Robinia pseudoacacia bark for solving eutrophication vol.36, pp.9, 2017, https://doi.org/10.1007/s11814-019-0331-x