• Title/Summary/Keyword: Heating effect

Search Result 2,292, Processing Time 0.032 seconds

High energy laser heating and ignition study

  • Lee, K.C.;Kim, K.H.;Yoh, J.J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.525-530
    • /
    • 2008
  • We present a model for simulating high energy laser heating and ignition of confined energetic materials. The model considers effect of ablation of steel plate with long laser pulses and continuous lasers of several kilowatts and the thermal response of well-characterized high explosives for ignition. Since there is enough time for the thermal wave to propagate into the target and to create a region of hot spot in the high explosives, electron thermal diffusion of ultra-short(femto- and pico-second) lasing is ignored; instead, heat diffusion of absorbed laser energy in the solid target is modeled with thermal decomposition kinetic models of high explosives are used. Numerically simulated pulsed-laser heating of solid target and thermal explosion of cyclotrimethylenetrinitramine(RDX), triaminotrinitrobenzene(TATB), and octahydrotetranitrotetrazine(HMX) are compared to experimental results. The experimental and numerical results are in good agreement.

  • PDF

Temperature effect on spherical Couette flow of Oldroyd-B fluid

  • Hassan, A. Abu-El;Zidan, M.;Moussa, M.M.
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.201-209
    • /
    • 2007
  • The present paper is concerned with non-isothermal spherical Couette flow of Oldroyd-B fluid in the annular region between two concentric spheres. The inner sphere rotates with a uniform angular velocity while the outer sphere is kept at rest. Moreover, the two spherical boundaries are maintained at fixed temperature values. Hence, the fluid is effect by two heat sources; namely, the viscous heating and the temperature gradient between the two spheres. The viscoelasticity of the fluid is assumed to dominate the inertia such that the latter can be neglected. An approximate analytical solution of the energy and momentum equations is obtained through the expansion of the dynamical fields in power series of Nahme number. The analysis show that, the temperature variation due to the external source appears in the zero order solution and its effect extends to the fluid velocity distribution up to present second order. Viscous heating contributes in the first and second order solutions. In contrast to isothermal case, a first order axial velocity and a second order stream function fields has been appeared. Moreover, at higher orders the temperature distribution depends on the gap width between the two spheres. Finally, there exist a thermal distribution of positive and negative values depend on their positions in the domain region between the two spheres.

Effect of heat pump performance improvement by use of thermal tank with temperature seperation plate (격판분리 축열조의 히트펌프 성능개선 효과)

  • Moon, Jongpil;Lee, Sunghyoun;Kwon, Jinkyung;Kang, YounKoo;Lee, Sujang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.80.1-80.1
    • /
    • 2011
  • This study was carried out in order to estimate the effect of heat pump performance by use of thermal tank with 3 seperation plates which were able to divide thermal tank into 3 chambers that have different temperatures levels. For testing the effect of developed thermal tank which was installed for supplying the heat to the paprika greenhouse in Jinju city. The volume of thermal storage tank was designed for $110m^3$ which was able to cover 30% of heating capacity. The temperature difference was 3 degree Celcius between high temperature and low temperature when only heating circulation was made from heat pump to thermal tank. but 5.5 degree Celcius difference was made when heating circulation of heat pump to thermal thank and hot water supplying circulation of thermal tank to greenhouse was done simultaneously. As a result of this study showed that COP of heat pump was increased by 15% or more than that of using normal thermal tank because heat pump was able to take 3 ~ 5 degree Celcius lower thermal thank water constantly.

  • PDF

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.

A Study on Relationship Insulation Thickness and Infiltration Load by Window (단열재 두께 변화와 창호 침기 부하와의 관계)

  • Choi, Jeong-Min;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.422-427
    • /
    • 2012
  • This study investigates on the relationship between total load which is caused by infiltration and insulation thickness against compensation effect. As the result of experiment, the PVC(Synthetic resins sash) window frame in airtightness is superior to the AL(Aluminum sash) window frame. In this study, as the increasing of insulation thickness in reference building does not reduce significantly cooling load, the compensation effect due to airtightness against infiltration is very small. But the compensation effect against infiltration can be closely related with heating load. Therefore, the proper thermal insulation thickness can be needed respect to cooling and heating load.

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Effect of Microwave Vacuum Heating on Inactivation of Enzymes (마이크로파 진공가열방법이 효소의 불활성화에 미치는 영향)

  • Moon, Eun-Kyung;Han, Ki-Young;Kim, Suk-Shin;Kim, Sang-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.284-291
    • /
    • 1997
  • Microwave vacuum heating method (2450 MHz) was used for a low intensity of heat treatments. High vacuum under the microwave heating could bring low temperature condition. Inactivation of ${\alpha}-amylase,\;{\beta}-amylase$, glucoamylase and peroxidase by microwave vacuum heating were investigated at 60-$80^{\circ}C$. It was compared with conventional heating. The heating condition of microwave vacuum heating was confirmed by the destruction of ascorbic acid. When thermal inactivations of the enzymes by microwave vacuum heating were determined, it was less effective than that of conventional method at the initial stage of heating. It was due to a lag time of microwave heating. However, the heating time for complete inactivation of the enzymes by microwave vacuum heating could be reduced comparing with that of conventional heating. Optimum conditions for inactivation of the enzymes could be obtained by microwave vacuum heating.

  • PDF

An Investigation of In Situ TEM Heating Experiments of Powder Samples (분말 시료의 투과전자현미경 직접 가열 실험법 연구)

  • Kim, Youn-Joong;Jeung, Jong-Man;Lee, Young-Boo;Lee, Su-Jeong;Song, Ji-Ho
    • Applied Microscopy
    • /
    • v.31 no.4
    • /
    • pp.315-323
    • /
    • 2001
  • In situ TEM heating experiments utilizing kaolinite powder samples result in the following facts. (1) The water recirculation system adopted in the Gatan's heating holder is required to prevent specimen drift above $500^{\circ}C$. (2) Since the degree of phase changes depends on the thickness of powders below $600^{\circ}C$, examinations of both thin and thick specimens are required. (3) Sample preparation using Mo-grids is required for TEM heating experiments above $900^{\circ}C$. At these temperature ranges the effect of heating rate and holding time on the phase transition process increases drastically, so that a programmed temperature control is required. (4) TEM heating experiments of the embedded powders by epoxy for the cross-sectional view was limited due to the severe epoxy movement during heating above $300^{\circ}C$. Better methods of sample preparation are required to overcome this problem.

  • PDF

Growth and Yield of Hydroponic Rose "Little Marble" as Affected by Root Zone Temperature and Heating Method in Winter Season (동계 근권 온도 및 가온방법이 양액재배 장미 "리틀마블"의 생육과 수량에 미치는 영향)

  • Lee, Mi-Young;Hwang, Seung-Jae;Jeong, Byung-Ryong
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.39-40
    • /
    • 2001
  • This experiment was conducted to investigate the effect of root zone heating on the growth of cut minirose Rosa hybrida L. ′Little Marble′ in winter season. Effects of four different root zone temperatures of 16, 20, 24$^{\circ}C$ and non-heating control on the growth and productivity were compared. Harvested cut-flowers were measured for stem length, stem diameter, fresh and dry weights, numbers of leaves, stems and flowers, days to flower, and chlorophyll concentration. The results showed that mean height was the greatest at 16$^{\circ}C$. Days to flower was the shortest at 24$^{\circ}C$. Fresh and dry weights of top (shoot+leaf+flower), shoot and leaf were the greatest at 2$0^{\circ}C$. Stem and flower numbers were the greatest at 16$^{\circ}C$, but leaf number was the greatest at 2$0^{\circ}C$. Mean cut flower yield was the greatest at 16$^{\circ}C$. Chlorophyll concentration was slightly higher at 16$^{\circ}C$, but was not significantly different among the treatments. Stem diameter was the greatest at 2$0^{\circ}C$. Dry matter was the greatest at 24$^{\circ}C$. Total yield of cut rose stems increased with increasing temperature. Combined heating could save 24% in fuel cost as compared to the air heating alone. The results obtained suggested that optimal root zone temperature for the growth of cut rose "Little Marble" was 2$0^{\circ}C$, and the greenhouse heating energy can be saved by minimal air heating combined with root zone heating to 2$0^{\circ}C$.

  • PDF

A study on coil temperature bariation in 75% hydrogen batch annealing furnace (75% 수소 BATCH 소둔시에서의 코일 온도변화에 관한 연구)

  • Jeon, Eon-Chan;Kim, Soon-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.173-181
    • /
    • 1994
  • A Cold spot temperature control system for the batch annealing furnace has been estabilished in order to reduce energy consumption to improve productivity and stabilize the propertics of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, variation of coil cold spot temperature with time during heating and actual temperature measurements at mid-width of each coil during heating and actual temperature measurements at mid-width of each coil during soaking. The results of the tempaeature variation effect on the batch annealing are as follows. 1) Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas, and annealing cycle time is reduced to 2.7 times. 2) In case of short time healing, the slowest heating part is the center of B coil, in case of long time heating, the low temperature point moves from the center of coil to inside coil. And the temperature in this part is higher than other parts when cooling. When finished heating, the cold spot is located 1/3 of coil inside in case of HNx atmospheric gas. But center of coil in case of Ax atmospheric gas. 3) The outside of top coil is the highest temperature point when heating, which becomes the lowest temperature point when cooling. So, this point becomes high temperature zone at heating and low temperature zone at cooling, It has relation according to atmospheric gas component and flow rate. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1214mm width coil must be 2.5 hours longer than that of 914mm width coil for the same ciol weight. 5) Annealing cycle time with Ax atmospheric gas is extended 1 hour in of slow cooling during 5 hours in order to avoid rapid cooling.

  • PDF