• Title/Summary/Keyword: Heating coefficient

Search Result 511, Processing Time 0.025 seconds

Study on Heating Load Characteristics and Thermal Curtain Effects for Simple Silkworm Rearing Houses(I) -Heating Load Coefficient and Maximum Heating Load- (간이잠실(簡易蠶室)의 난방(暖房) 부하특성(負荷特性) 및 보온(保溫)커튼 설치효과(設置効果)에 관(關)한 연구(硏究)(I) -간이잠실(簡易蠶室)의 난방(暖房) 부하계수(負荷係數) 및 최대(最大) 난방부하(暖房負荷)-)

  • Choe, K.J.;Lee, D.H.;Park, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.346-354
    • /
    • 1990
  • In order to provide basic references for the design of heating on simple silkworm rearing house, the actual change of heating load coefficient by progress of adult silkworm rearing day from the reared in silkworm rearing house, the heating load coefficient by types of silkworm rearing houses and the heating requirement and the maximum heating load by types of silkworm rearing houses were determined. The results obtained from the study were as follows : 1. The average heating load coefficients of NS, OS and CC type simple silkworm rearing houses were $24.1KJ/m^2-hr-^{\circ}C$, $19.8KJ/m^2-hr-^{\circ}C$, and $10.8KJ/m^2-hr-^{\circ}C$, respectively. 2. The change of heating load coefficient by progress of silkworm rearing day after reared into simple silkworm rearing house could be expressed as Fig. 4. 3. Heating degree-hour for adult silkworm rearing in Suweon district was calculated as $951.6^{\circ}C-hr$ for spring season and $610.5^{\circ}C-hr$ for autumn season. 4. Yearly heating requirement of the NS type was estimated twice more than that of the CC type. Thus, some kinds of reinforced thermal adiabatic facilities is desirable for NS type. 5. The time for maximum heating load was turned out at the 4th instar during the spring season and after the mounting during the autumn season. 6. This study was performed in Suweon district. However, the estimated and analyzed data could be adapted to the major silkworm rearing district if their meteorology data were adjusted.

  • PDF

Radiation Heat-Transfer Coefficient of the Indoor Surface in Ondol Heating Space (온돌난방공간(溫突暖房空間)의 내표면(內表面) 복사열전달률(輻射熱傳達率)에 관(關)한 연구(硏究))

  • Sohn, J.Y.;Ahn, B.W.;Shin, Y.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.5
    • /
    • pp.598-606
    • /
    • 1988
  • The radiation heat-transfer coefficient is generally used to calculate radiant heat exchange of heating space. The coefficient is evenly adopted in most cases, but it is not correct in actual cases. The purpose of this paper is to grasp the changing aspect of radiation heat-transfer coefficient needed for heating load calculation of radiant heating space. Surface temperatures are measured in an Ondol space, and the coefficients are derived and examined. Gebhart's Absorption Factor Method is used for the calculations of the rates of instantaneous radiant exchange in the room. As the result, it is confirmed that the coefficients are variant according to surface temperatures, and proper coefficients are needed for each of conditions.

  • PDF

Performance Analysis of an Earth Coupled Heat Pump System Operated by an Engine(II) - Performance Analysis of a Vapour Compression type Compact Heat Pump - (엔진구동 지열 열펌프의 성능 분석(II) - 소형 증기압축식 열펌프의 성능 분석 -)

  • 김영복;송대빈;손재길
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • In this study, the coefficient of performance of a vapour compression heat pump system was analyzed for the evaluation of the heat pump performance. A water-to-air heat pump was assembled and tested by changing the level of the compressor driving speed and the air mass flow rate during air heating process. The coefficient of performance for air heating was 2.6~3.8 and that for water cooling was 1.0~1.4. The coefficient of performance was not depending on the levels of the compressor driving speed or levels of the air mass flow rate, but on the temperature of the air and water. The coefficient of performance for air heating increased by about 0.2 with the water temperature increasing by 1$^{\circ}C$.

  • PDF

An Experimental Study on Heat Transfer Performance of Heating Medium Oil Fluidized Bed Heat Exchanger (열매체유 유동층 열교환기의 전열성능에 대한 실험적 연구)

  • Park, Sang-Il;Ko, Chang-Bok;Lee, Young-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.146-151
    • /
    • 2015
  • The heat transfer performance of heating medium oil fluidized bed heat exchanger was measured. The operation variables were air flow rate, air inlet temperature, moisture content, water flow rate and water inlet temperature. The outside heat transfer coefficient was determined from the heat exchanger experiment and its experimental correlation was determined as a function of air velocity and viscosity of heating medium oil. Effect of viscosity was well agreed with the previous studies. Errors of the correlation equation was less than about 10% for outside heat transfer coefficient developed in this study when compared with the measured value. Hot water with the temperature greater than $77^{\circ}C$ could be produced by using the heating medium oil fluidized bed heat exchanger.

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Experimental Study on the Performance of Heat Pump Using Refrigerant Mixture R22/R142b (R22/R142b 혼합냉매를 사용한 열펌프의 성능)

  • Kim, M.S.;Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.1
    • /
    • pp.33-47
    • /
    • 1992
  • Experimental investigation on the performance of a heat pump system using refrigerant mixtures is done. The condenser and the evaporator are double pipe heat exchangers of counter flow type and the compressor is driven by a variable speed motor. The refrigerant mixture used in the experiment is R22/R142b. Experiments are performed by changing the compressor speed, composition on ratio of mixture, and the average temperatures of condenser and evaporator. The compressor work, heating capacity and the coefficient of performance are calculated. Results show that the heating capacity can be changed by varying the mass flow rate of refrigerant mixtures to meet the heating load. It is shown that the capacity control by changing the composition ratio is more effective than by changing the compressor speed. Under the condition where the external conditions are fixed and the heating loads are equal, the coefficient of performance has its maximum value near 50 : 50 mass fraction of the refrigerant mixture in this study.

  • PDF

Energy Performance Evaluation of Apartment Houses According to Window Energy Consumption Efficiency Rating System in Korea (창호 에너지소비효율등급제에 따른 공동주택의 열성능 평가)

  • Lim, Hee Won;Kim, Dong Yun;Lee, Soo Man;An, Jung Hyuk;Yoon, Jong Ho;Shin, U Cheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.4
    • /
    • pp.159-166
    • /
    • 2018
  • The Korean fenestration energy consumption efficiency rating system only considers thermal performance of the heat transfer coefficient (U-value) and airtightness excluding optical characteristics of the solar heat gain coefficient (SHGC). This study analyzed annual heating and cooling energy requirements on the middle floor of apartment by optical and thermal performance of windows to evaluate the suitability of the rating system. One hundred and twenty-eight windows were analyzed using THERM and WINDOW 7.4, and energy simulation for a reference model of an apartment house facing south was performed using TRNSYS 17. The results showed that window performance was the main factor in the heating and cooling load. The heating load of the reference model was 539 kWh to 2,022 kW, and the cooling load was 376 kWh to 1,443 kWh. The coefficient of determination ($R^2$) of the heating and cooling loads driven from the SHGC were 0.7437 and 0.9869, which are more compatible than those from the U-value, 0.0558 and 0.4781. Therefore, it is not reasonable to evaluate the energy performance of windows using only the U-value, and the Korean fenestration energy consumption efficiency rating system requires a new evaluation standard, including SHGC.

A Resonant Circuit Design of the Inverter for Induction Heating by Analysis of the Coupling Coefficient (결합계수 해석에 의한 유도가열용 인버터의 공진회로 설계법)

  • 이광직;김주홍
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.90-95
    • /
    • 1997
  • In designing a resonant circuit of the inverter which puts induction heating with high frequency to the load, an inductance L of the circuit, the coupling coefficient of a transformer transfering the output power to load, and the coupling coefficient of load circuit heating with coil affect to the output power of a resonant circuit, the circuit Q and the frequency. Those characteristics of the circuit are analyzed through Thevenan's equivalent circuit of the coupling coefficient type which is derived from the T-type equivalent circuit of a transformer. On this equivalent circuit, the impedance of a transformer referred to its primary side is not only proportional the square of turn ratio, nZ, but also the square of coupling coefficient, K2 This paper proposed a more accurate fundamental method to design a resonant circuit of the inverter by using the Thevenan's equivalent circuit.

  • PDF

Study on Heating Performance of Hybrid Heat Pump System Using Geothermal Source and Solar Heat for Protected Horticulture (시설원예용 지열 및 태양열 이용 하이브리드 히트펌프 시스템의 난방성능에 관한 연구)

  • Jeon, Jong Gil;Lee, Dong Geon;Paek, Yee;Kim, Hyung Gweon
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.5
    • /
    • pp.49-56
    • /
    • 2015
  • In this study a hybrid heating system based on geothermal source and solar heat was developed in order to save energy for greenhouse heating and its field performance was evaluated. Developed system are composed of following parts: water tank, heat exchanger, heat pump, fan coil unit and heat storage unit. The working performance test was carried out in a greenhouse cultivating oriental orchids being managed by $23^{\circ}C$. Field performance test results showed that average heating coefficient of performance ($COP_h$) was 3.4 for the period from mid-January to mid-March 2013. Heating coefficient of performance ($COP_h$) of developed hybrid heat pump system was more sensitive to water tank temperature than outside air temperature. This study showed that developed hybrid heat pump system has a potential to save the heating costs up to 91% compared to conventional agricultural oil heaters.

Analysis of Heat Emission from Hot Water Pipe for Greenhouse Heating System Design (온실 난방시스템 설계를 위한 온수난방배관의 방열량 분석)

  • Shin, Hyun-Ho;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.204-211
    • /
    • 2019
  • The purpose of this study is to provide basic data for setting environmental design standards for domestic greenhouses. We conducted experiments on thermal environment measurement at two commercial greenhouses where hot water heating system is adopted. We analyzed heat transfer characteristics of hot water heating pipes and heat emission per unit length of heating pipes was presented. The average air temperature in two greenhouses was controlled to $16.3^{\circ}C$ and $14.6^{\circ}C$ during the experiment, respectively. The average water temperature in heating pipes was $52.3^{\circ}C$ and $45.0^{\circ}C$, respectively. Experimental results showed that natural convection heat transfer coefficient of heating pipe surface was in the range of $5.71{\sim}7.49W/m^2^{\circ}C$. When the flow rate in heating pipe was 0.5m/s or more, temperature difference between hot water and pipe surface was not large. Based on this, overall heat transfer coefficient of heating pipe was derived as form of laminar natural convection heat transfer coefficient in the horizontal cylinder. By modifying the equation of overall heat transfer coefficient, a formula for calculating the heat emission per unit length of hot water heating pipe was developed, which uses pipe size and temperature difference between hot water and indoor air as input variables. The results of this study were compared with domestic and foreign data, and it was found to be closest to JGHA data. The data of NAAS, BALLS and ASHRAE were judged to be too large. Therefore, in order to set up environmental design standards for domestic greenhouses, it is necessary to fully examine those data through further experiments.