• Title/Summary/Keyword: Heating Furnace

Search Result 260, Processing Time 0.028 seconds

Characteristics of Soil Conditioner Pellets Fabricated by Self-propagating Combustion Methods Using Coal Refuse (석탄폐석의 자열소성을 이용한 토양개량용 펠릿의 제조와 특성)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Nam, Chul-Woo;Park, Chong-Lyuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.379-386
    • /
    • 2008
  • Calcined clay granules (pellet) have been used as a soil conditioner. The space among the pellets can secure drainage of water in soil and, simultaneously, can keep water for plants in the inner pore of that. However, the usage of the pellet has been restrained because fabrication of that requires a high energy and cost for heating over the temperate of $1000^{\circ}C$. Recently, SCS(Self-propagating Combustion and Sintering) method was developed and this method use the combustion energy of the preliminary mixed combustible. The SCS method is suitable to fabrication of small porous aggregate and requires a very low cost. This research applied the SCS method to coal refuses for fabrication of soil conditioner pellets. The coal refuses were pulverized under the size of $100{\mu}m$ and the pulverized powders were pelletized to the size of 4~6mm. The pellets were heated at the temperature of $1200^{\circ}C$ in the SCS furnace that was specially prepared for this research. Characteristics of the pellets were investigated and were compared with that of ordinary calcined clay pellet of kaolin; porosity, pore size distribution, bulk density, pH and etc.. Characteristics of the moisture retention in the pellets were measured by the centrifugal method: ASTM D425-88. The pellets of the coal refuses showed the higher values of the field capacity and the plant-available water than that of kaolin pellet. These results suggest the very low cost process that can utilize the coal refuses and can fabricate the lightweight porous soil conditioner of the very high plant-available water.

Patterns of Mercury Concentrations in Blood and Urine After High Mercury Exposure (고농도 수은 노출자의 혈 중 및 뇨 중 수은 농도 변화에 관한 연구)

  • 윤충식;임상혁;하권철
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.71-80
    • /
    • 2001
  • Blood and urine mercury level of three workers were monitored during 60~80 days after high exposure to mercury at the silver refining plant. Mercury was used to form silver-mercury amalgam from plating sludge. Workers were exposed to mercury about 70 days at the several processes, such as hand held weaving, vibration table, and heating from the furnace. mercury was analysed by atomic absorption spectroscopy-vapor generation technique. Recovery from the biological sample was 95.51% and pooled standard deviation was 0.033. At the time of study, there was no work at the workplace. So, airborne mercury concentration was measured with area sampling 5 days after the work, ranged from 0.1459 to 1.2351 mg/㎥(Arithmatic mean 0.4711 mg/㎥, Geometric mean 0.3566 mg/㎥) at the inside of the plant, that is far above the ACGIH's TLV(0.025 mg/㎥) and ranged from 0.0073 to 0.0330 mg/㎥ at the outdoor. Blood mercury levels at the beginning of the monitoring were 4~14 times greater than the American Conference of Governmental Industrial Hygienists Biological Exposure Index(ACGIH BEI, 15 ug/L). Blood mercury levels were decreased logarithmically, that is, rapidly at the high level and slowly at the low level but sustained above the level of the ACGIH BEI 60~80 days after the work. Urine mercury levels at the beginning of the monitoring were 8~16 times greater than the ACGIH BEI(35 ug/g creatinine). Urine mercury levels were decreased logarithmically, but correlation between urine level and off-days were lower than those of blood. Decreasing pattern of blood mercury levels were little affected than that of urine levels when the chelating agent, D-penicillamine, was administered. There was correlation between blood mercury level and urine mercury level(0.81~0.83) but it didn\`t mean that the highest blood mercury level corresponded the highest urine mercury level. In our study, Case 1 always shows the highest level in urine but case 3 always shows the highest level in blood. Creatinine correction represented better correlations between urine mercury levels and blood levels, and between urine levels and off-days rather than by urine volume. Spot urine sampling had a wide variation than that of whole day urine sampling. So, We recommend spot urine sampling for screening and whole day urine sampling for exact diagnosis.

  • PDF

A Study on Improvement of Durability for Run-out Table Roller with Hot Rolling by Porous Self-fluxing Alloy Coating (다공질 자용성 합금 피복에 의한 열간 압연용 런-아웃 테이블 롤러의 내구성 향상에 관한 연구)

  • Bae, Myung-Whan;Park, Byoung-Ho;Jung, Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.276-285
    • /
    • 2012
  • The objective of this research is to develop the coating technique by a porous self-fluxing alloy for improving the mechanical properties of run-out table roller surface with the hot rolling. To enhance the durability of run-out table roller with the hot rolling, the high hardness of roller surface should be maintained at high temperatures, and the improvement of wear resistance, corrosion resistance, heat resistance, burn resistance and adhesion resistance should be maintained. In order to be able to transport reliably a hot rolled steel sheet, also, the appropriate friction coefficient on the roller surface should be maintained and the slip between roller and steel should not occur. In this study, the wear resistance of roller increases after the self-fluxing alloy is changed to a cermet by adding the tungsten carbide(WC), and the coefficient of friction increases and the ability of grip is improved because the porosities are made by coating with fine iron powder on the roller surface. As a result, it is found that the ability of grip between the steel and the roller coated by a porous self-fluxing alloy contained to 5 ~ 10 wt% of Fe in the coating layer is improved compared to the roller coated by Ni-Cr. This is because the porosities are made after Fe contained in the roller is partially alloyed by heating with a furnace in the fusing process and the rest is eliminated by oxidation and dissolution.

Characteristics of Carbonized Biomass Produced in a Manufacturing Process of Wood Charcoal Briquettes Using an Open Hearth Kiln (평로탄화로를 이용한 성형목탄 제조공정에서 생산된 탄화 바이오매스의 특성)

  • JU, Young Min;LEE, Hyung Won;KIM, Ah-ran;JEONG, Hanseob;CHEA, Kwang-Seok;LEE, Jaejung;AHN, Byoung-Jun;LEE, Soo Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.181-195
    • /
    • 2020
  • Characteristics of carbonized biomass obtained from a Wood charcoal briquette manufacturing process using an open hearth kiln are analyzed in this research, and differences in the characteristics based on the results of a mechanical screening process and the position within the kiln. One type of biomass and five types of carbonized biomass were collected from a Wood charcoal briquette manufacturer. After screening and grinding processes were performed on samples of 1 type of biomass and 5 types of carbonized biomass extracted from a Wood charcoal briquettes manufacturer to classify by particle size, fixed carbon, ash, volatile matters, elemental composition, and high heating value (HHV) were measured. Experimental results showed that the carbonized biomass collected from the middle layer had the highest HHV, 20.4 MJ/kg, and therefore had the highest fuel quality. In terms of particle size, the carbonized biomass below 100 mesh had the lowest ash content and the highest HHV, carbon content, and fixed carbon content. Correlation analyses showed that ash content had negative correlations with HHV, volatile matters, fixed carbon, and carbon content, which suggested that ash content affected negatively on fuel quality.

Development of Pozzolanic material from clay

  • Alaskar, Abdulaziz;Shah, S.N.R.;Keerio, Manthar Ali;Phulpoto, Javed Ali;Baharom, Shahrizan;Assilzadeh, Hamid;Alyousef, Rayed;Alabduljabbar, Hisham;Mohamed, Abdeliazim Mustafa
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.301-310
    • /
    • 2020
  • The following paper concentrates on the objective of studying the influences of extent of duration and temperature on the Pozzolanic properties as well as reactivity of locally existing natural clay of Nai Gaj, district Dadu, Sindh Pakistan. The activation of the clay only occurs through heating when temperature in a furnace chamber reaches 600, 700 and 800oC for 1, 2 and 3 hours and at 900 and 1000℃ for 1 and 2 hours. Furthermore, the strength activity index (SAI) of advanced pozzolanic material happens to be identified through 20% cement replacement for different samples of calcined clay as per ASTM C-618. The compressive strength test of samples had been operated for 7 and 28-days curing afterwards. The maximum compressive strength had been seen in mix E in which cement was replaced with clay calcined at 700℃ for 1 hour that is 27.05 MPa that is 24.31% more than that of control mix. The results gathered from the SAI verdicts the optimal activation temperature is 700℃ within a one-hour time period. The SAI at a temperature of 700℃ with a one-hour duration at 28 days is 124.31% which happens to satisfy the requirements of the new Pozzolanic material, in order to be applied in mortar/concrete (i.e., 75%). The Energy- dispersive spectrometry (EDS) along with the X-ray diffraction (XRD) have been carried out in means of verifying whether there is silica content or amorphous silica present in metakaolin that has been developed. The findings gathered from the SAI were validated, as the analysis of XRD verified that there is in fact Pozzolanic activity of developed metakaolin. Additionally, based on observation, the activated metakaolin holds a significant influence on the increase in mortar's compressive strength.

Development of Prediction Model for Nitrogen Oxides Emission Using Artificial Intelligence (인공지능 기반 질소산화물 배출량 예측을 위한 연구모형 개발)

  • Jo, Ha-Nui;Park, Jisu;Yun, Yongju
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.588-595
    • /
    • 2020
  • Prediction and control of nitrogen oxides (NOx) emission is of great interest in industry due to stricter environmental regulations. Herein, we propose an artificial intelligence (AI)-based framework for prediction of NOx emission. The framework includes pre-processing of data for training of neural networks and evaluation of the AI-based models. In this work, Long-Short-Term Memory (LSTM), one of the recurrent neural networks, was adopted to reflect the time series characteristics of NOx emissions. A decision tree was used to determine a time window of LSTM prior to training of the network. The neural network was trained with operational data from a heating furnace. The optimal model was obtained by optimizing hyper-parameters. The LSTM model provided a reliable prediction of NOx emission for both training and test data, showing an accuracy of 93% or more. The application of the proposed AI-based framework will provide new opportunities for predicting the emission of various air pollutants with time series characteristics.

Study on th growth of nonlinear optical crystal $CsLiB_{6}O_{10}$ (비선형 광학 결정 $CsLiB_{6}O_{10}$ 육성에 관한 기초 연구)

  • 김호건;김명섭
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.166-176
    • /
    • 1996
  • The fundamental conditions for growing $CsLiB_{6}O_{10}$ crystal, new nonlinear optical material, were investigated. Stoichiometirc mixture of $CsLiB_{6}O_{10}$ composition resulted in the crystal of the same composition in the process of heating at the temperature above $600^{\circ}C$. No phase transition was observed in the $CsLiB_{6}O_{10}$ crystal in the temperature range of $600^{\circ}C~800^{\circ}C$, and $CsLiB_{6}O_{10}$ crystal melted congruently at $850^{\circ}C$. When the melt of this composition was cooled at rates of $1~150^{\circ}C/hr$, glass state ingot was formed regardless of cooling rates. However, $CsLiB_{6}O_{10}$ crystals were formed directly from the melt at any cooling rate in the presence of $CsLiB_{6}O_{10}$ seed crystal in the melt. Transparent $CsLiB_{6}O_{10}$ single crystal was grown from the melt using the seed crystal at the growing rate of 0.06 mm/hr in the furnace having the temperature gradient of $100^{\circ}C/cm$. Analysis of the single crystal showed that the crystal belonged to the noncentrosymmetric tetragonal space group 142d and unit cell dimensions were $a=10.467(1)\;{\AA},\;c=8.972(1)\;{\AA}\;and\;V=983.0(2)\;{\AA}^3$. Optical absorption edge of the crystal was observed at 180mm and the crystal showed a good optical transparency (70% transmittance, sample thickness 0.5 mm) in the wide wavelength range above 300 nm.

  • PDF

Modeling of heat efficiency of hot stove based on neural network using feature extraction (특성 추출과 신경회로망을 이용한 열 풍로 열효율에 대한 모델링)

  • Min Kwang Gi;Choi Tae Hwa;Han Chong Hun;Chang Kun Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.60-66
    • /
    • 1998
  • The hot stove system is a process that is continuously and constantly generating the hot combustion air required for the blast furnace. The hot stove process is considered as a main energy consumption process because it consumes about $20\%$ of the total energy in steel making works. So, many researchers have interested in the improvement of the heat efficiency of the hot stove to reduce the energy consumption. But they have difficulties in improving the heat efficiency of the hot stove because there is no precise information on heat transformation occurring during the heating period. In order to model the relationship between the operating conditions and heat efficiencies, we propose a neural network using feature extraction as one of experimental modeling methods. In order to show the performance of the model, we compare it with Partial Least Square (PLS) method. Both methods have similarities in using the dimension reduction technique. And then we present the simulation results on the prediction of the heat efficiency of the hot stove.

  • PDF

A New process for the Solid phase Crystallization of a-Si by the thin film heaters (박막히터를 사용한 비정질 실리콘의 고상결정화)

  • 김병동;정인영;송남규;주승기
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.3
    • /
    • pp.168-173
    • /
    • 2003
  • Recently, according to the rapid progress in Flat-panel-display industry, there has been a growing interest in the poly-Si process. Compared with a-Si, poly-Si offers significantly high carrier mobility, so it has many advantages to high response rate in Thin Film Transistors (TFT's). We have investigated a new process for the high temperature Solid Phase Crystallization (SPC) of a-Si films without any damages on glass substrates using thin film heater. because the thin film heater annealing method is a very rapid thermal process, it has very low thermal budget compared to the conventional furnace annealing. therefore it has some characteristics such as selective area crystallization, high temperature annealing using glass substrates. A 500 $\AA$-thick a-Si film was crystallized by the heat transferred from the resistively heated thin film heaters through $SiO_2$ intermediate layer. a 1000 $\AA$-thick $TiSi_2$ thin film confined to have 15 $\textrm{mm}^{-1}$ length and various line width from 200 to 400 $\mu\textrm{m}$ was used as the thin film heater. By this method, we successfully crystallized 500 $\AA$-thick a-Si thin films at a high temperature estimated above $850^{\circ}C$ in a few seconds without any thermal deformation of g1ass substrates. These surprising results were due to the very small thermal budget of the thin film heaters and rapid thermal behavior such as fast heating and cooling. Moreover, we investigated the time dependency of the SPC of a-Si films by observing the crystallization phenomena at every 20 seconds during annealing process. We suggests the individual managements of nucleation and grain growth steps of poly-Si in SPC of a-Si with the precise control of annealing temperature. In conclusion, we show the SPC of a-Si by the thin film heaters and many advantages of the thin film heater annealing over other processes

Assessment of Fire-Damaged Mortar using Color image Analysis (색도 이미지 분석을 이용한 화재 피해 모르타르의 손상 평가)

  • Park, Kwang-Min;Lee, Byung-Do;Yoo, Sung-Hun;Ham, Nam-Hyuk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.83-91
    • /
    • 2019
  • The purpose of this study is to assess a fire-damaged concrete structure using a digital camera and image processing software. To simulate it, mortar and paste samples of W/C=0.5(general strength) and 0.3(high strength) were put into an electric furnace and simulated from $100^{\circ}C$ to $1000^{\circ}C$. Here, the paste was processed into a powder to measure CIELAB chromaticity, and the samples were taken with a digital camera. The RGB chromaticity was measured by color intensity analyzer software. As a result, the residual compressive strength of W/C=0.5 and 0.3 was 87.2 % and 86.7 % at the heating temperature of $400^{\circ}C$. However there was a sudden decrease in strength at the temperature above $500^{\circ}C$, while the residual compressive strength of W/C=0.5 and 0.3 was 55.2 % and 51.9 % of residual strength. At the temperature $700^{\circ}C$ or higher, W/C=0.5 and W/C=0.3 show 26.3% and 27.8% of residual strength, so that the durability of the structure could not be secured. The results of $L^*a^*b$ color analysis show that $b^*$ increases rapidly after $700^{\circ}C$. It is analyzed that the intensity of yellow becomes strong after $700^{\circ}C$. Further, the RGB analysis found that the histogram kurtosis and frequency of Red and Green increases after $700^{\circ}C$. It is analyzed that number of Red and Green pixels are increased. Therefore, it is deemed possible to estimate the degree of damage by checking the change in yellow($b^*$ or R+G) when analyzing the chromaticity of the fire-damaged concrete structures.