• Title/Summary/Keyword: Heating Characteristics

Search Result 2,435, Processing Time 0.034 seconds

Effect of Zirconia Particle Addition on Curing Behavior of Phenolic Resins (Zirconia 입자의 첨가가 페놀 수지의 경화거동에 미치는 영향)

  • Yun, Jaeho;Kim, Hanjun;Lee, Jae Min;Kim, Jong Hee;Lee, Seung Goo
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.288-297
    • /
    • 2022
  • This study investigated the effect of addition of zirconia(zirconium oxide) powder on the curing behavior of phenolic resins. The heating rate controlled curing and isothermal curing behaviors of the phenol resin according to the content of the zirconia powder were analyzed. The viscosity and thermal decomposition characteristics of the phenolic resin with the zirconia content were also examind. From the DSC analysis, the degree of cure and the rate of cure were obtained. Finally, the activation energy for the cure reaction were calculated from the DSC data of the zirconia added phenolic resin. As a found, the higher the zirconia content, the longer the curing was delayed and the greater the activation energy required for curing. Additionally, the TGA result that as the content of zirconia increased, less weight loss was observed. The surface tackiness of the Carbon/Phenol prepreg was partially changed according to the zirconia content, but had no significant effect.

Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation (열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석)

  • Byun, Sangwon;Kim, Youngshin;Jeon, Euy sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

Water Sorption/Desorption Characteristics of Eutectic LiCl-KCl Salt-Occluded Zeolites

  • Harward, Allison;Gardner, Levi;Oldham, Claire M. Decker;Carlson, Krista;Yoo, Tae-Sic;Fredrickson, Guy;Patterson, Michael;Simpson, Michael F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.259-268
    • /
    • 2022
  • Molten salt consisting primarily of eutectic LiCl-KCl is currently being used in electrorefiners in the Fuel Conditioning Facility at Idaho National Laboratory. Options are currently being evaluated for storing this salt outside of the argon atmosphere hot cell. The hygroscopic nature of eutectic LiCl-KCl makes is susceptible to deliquescence in air followed by extreme corrosion of metallic cannisters. In this study, the effect of occluding the salt into a zeolite on water sorption/desorption was tested. Two zeolites were investigated: Na-Y and zeolite 4A. Na-Y was ineffective at occluding a high percentage of the salt at either 10 or 20wt% loading. Zeolite-4A was effective at occluding the salt with high efficiency at both loading levels. Weight gain in salt occluded zeolite-4A (SOZ) from water sorption at 20% relative humidity and 40℃ was 17wt% for 10% SOZ and 10wt% for 20% SOZ. In both cases, neither deliquescence nor corrosion occurred over a period of 31 days. After hydration, most of the water could be driven off by heating the hydrated salt occluded zeolite to 530℃. However, some HCl forms during dehydration due to salt hydrolysis. Over a wide range of temperatures (320-700℃) and ramp rates (5, 10, and 20℃ min-1), HCl formation was no more than 0.6% of the Cl- in the original salt.

Tracing history of the episodic accretion process in protostars

  • Kim, Jaeyeong;Lee, Jeong-Eun;Kim, Chul-Hwan;Hsieh, Tien-Hao;Yang, Yao-Lun;Murillo, Nadia;Aikawa, Yuri;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.3-67
    • /
    • 2021
  • Low-mass stars form by the gravitational collapse of dense molecular cores. Observations and theories of low-mass protostars both suggest that accretion bursts happen in timescales of ~100 years with high accretion rates, so called episodic accretion. One mechanism that triggers accretion bursts is infalling fragments from the outer disk. Such fragmentation happens when the disk is massive enough, preferentially activated during the embedded phase of star formation (Class 0 and I). Most observations and models focus on the gas structure of the protostars undergoing episodic accretion. However, the dust and ice composition are poorly understood, but crucial to the chemical evolution through thermal and energetic processing via accretion burst. During the burst phase, the surrounding material is heated up, and the chemical compositions of gas and ice in the disk and envelope are altered by sublimation of icy molecules from grain surfaces. Such alterations leave imprints in the ice composition even when the temperature returns to the pre-burst level. Thus, chemical compositions of gas and ice retain the history of past bursts. Infrared spectral observations of the Spitzer and AKARI revealed a signature caused by substantial heating, toward many embedded protostars at the quiescent phase. We present the AKARI IRC 2.5-5.0 ㎛ spectra for embedded protostars to trace down the characteristics of accretion burst across the evolutionary stages. The ice compositions obtained from the absorption features therein are used as a clock to measure the timescale after the burst event, comparing the analyses of the gas component that traced the burst frequency using the different refreeze-out timescales. We discuss ice abundances, whose chemical change has been carved in the icy mantle, during the different timescales after the burst ends.

  • PDF

Effect of physicochemical properties and feed mix ratios on the carbothermic reductions of iron ore with coke

  • S.R.R. Munusamy;S. Manogaran;F. Abdullah;N.A.M. Ya'akob;K. Narayanan
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.161-171
    • /
    • 2024
  • This study aimed to investigate the effect of physicochemical properties and mix ratios of iron ore (oxide feed): coke (reductant) on the carbothermic reductions of iron ore. Coke size was fixed at ≤63 ㎛ while iron ore size varied between 150-63 ㎛ and ≤63 ㎛ respectively. Mix ratios were changed from 100:0 (reference) to 80:20 and 60:40 while the temperature, heating rate and soaking duration in muffle furnace were fixed at 1100 ℃, 10 ℃/min and 1 hour. Particle size analyzer, XRF, CHNS and XRD analyses were used for determination of raw feed characteristics. The occurrence of phase transformations from various forms of iron oxides to iron during the carbothermal reductions were identified through XRD profiles and supported with weight loss (%). XRF analysis proved that iron ore is of high grade with 93.4% of Fe2O3 content. Other oxides present in minor amounts are 2% Al2O3 and 1.8% SiO2 with negligible amounts of other compounds such as MnO, K2O and CuO. Composite pellet with finer size iron particles (≤63 ㎛) and higher carbon content of 60:40 exhibited 45.13% weight lost compared to 32.30% and 3.88% respectively for 80:20 and 100:0 ratios. It is evident that reduction reactions can only occur with the presence of coke, the carbon supply. The small weight loss of 3.88% at 100:0 ratio occurs due to the removal of moisture and volatiles and oxidations of iron ore. Higher carbon supply at 60:40 leads into better heat and mass transfer and diffusivity during carbothermic reductions. Overall, finer particle size and higher carbon supply improves reactivity and gas-solid interactions resulting in increased reductions and phase transformations.

Preparation and Microstructural Characteristics of Ti Nanopowder by Ball Milling and Dehydrogenation of TiH2 Powder (TiH2 분말의 볼 밀링과 탈수소화에 의한 Ti 나노분말 제조 및 미세조직 특성)

  • Ji Young Kim;Eui Seon Lee;Ji Won Choi;Youngmin Kim;Sung-Tag Oh
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.324-328
    • /
    • 2024
  • This study analyzed the influence of ball size and process control agents on the refinement and dehydrogenation behavior of TiH2 powder. Powders milled using ZrO2 balls with diameters of 0.1 mm, 0.3 mm, and 0.3+0.5+1 mm exhibited a bimodal particle size distribution, of which the first mode had the smallest size of 0.23 ㎛ for the 0.3 mm balls. Using ethanol and/or stearic acid as process control agents was effective in particle refinement. Thermogravimetric analysis showed that dehydrogenation of the milled powder started at a relatively low temperature compared to the raw powder, which is interpreted to have resulted from a decrease in particle size and an increase in defects. The dehydrogenation kinetics of the TiH2 powder were evaluated by the magnitude of peak shift with heating rates using thermogravimetric analysis. The activation energy of the dehydrogenation reaction, calculated from the slope of the Kissinger plot, was measured to be 228.6 kJ/mol for the raw powder and 194.5 kJ/mol for the milled powder. TEM analysis revealed that both the milled and dehydrogenated powders showed an angular shape with a size of about 200 nm.

Adsorption Characteristics of Methane and Carbon Dioxide in Zeolite with Flexible Framework (유연한 구조체를 가지는 제올라이트에서 메탄과 이산화탄소의 흡착 특성)

  • Yang Gon Seo
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.248-257
    • /
    • 2024
  • Carbon dioxide is an undesired component of biogas and landfill gas. As a result, it needs to be removed from these mixtures in order to increase their heating value and reduce corrosion during treatment. Zeolites are a class of microporous materials that can be used as adsorbents for the separation of carbon dioxide from gas mixtures. In this work, the pure gas adsorption isotherms of methane and carbon dioxide and the selectivity of their mixture onto LTA-4A, FAU-13X and FAU-NaY adsorbents at temperatures of 273, 298 and 323 K and pressures up to 30 bars were calculated by the Monte Carlo method. Also, the influence of a flexible framework in a set of zeolites on the separation of methane and carbon dioxide was studied. Carbon dioxide adsorption onto the zeolites used in this work was more favorable than methane adsorption. The FAU-13X adsorbent had the highest adsorption capacity among the studied adsorbents. However, the selectivity of carbon dioxide over methane for LTA-4A was the highest. The adsorption capacities of a rigid framework were higher than those of a flexible framework. The influence of the framework flexibility in FAU on adsorption capacity was small. In contrast, its influence on selectivity seemed to be much larger.

Recent research trends on transparent glass-ceramics as a white luminescent materials (백색 발광재료로서의 투명 결정화유리에 관한 최근 연구동향)

  • Seunggu Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.5
    • /
    • pp.163-172
    • /
    • 2024
  • White light-emitting diodes (W-LEDs) are widely used in displays and lighting due to their advantages of compact size, high efficiency, and long lifespan compared to traditional light sources. Glass-ceramics produced by inducing crystallization in amorphous glass through heating, finds applications in various high-performance fields. Its properties can be tailored through the addition of nucleating agents or phase separation phenomena. By forming nanometer-sized crystals, glass-ceramics can retain its characteristics while maintaining transparency in the visible range, making it suitable for a range of applications including optical switches, optical converters, lasers, medical devices, and sensors. Additionally, glass-ceramics containing rare earth elements, transition metals, quantum dots, and nanocrystals can convert blue or ultraviolet light into visible light, thereby enhancing the performance of W-LEDs. This paper explores the optical properties of glass-ceramics derived from oxide and fluoride glasses, its potential applications in W-LEDs, and recent research trends.

THE ELECTROMAGNETIC CHARACTERISTICS OF THE POLAR IONOSPHERE DURING A MODERATELY DISTURBED PERIOD (지자기교란시 극전리층의 전자기적인 특성)

  • 안병호
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.216-233
    • /
    • 1995
  • The distributions of the ionospheric conductivities, electric potential, ionospheric currents, field-aligned currents, Joule heating rate, and particle energy input rate by auroral electrons along with the characteristics of auroral particle spectrum are examined during moderately disturbed period by using the computer code developed by Kamide et al. (1981) and the ionospheric conductivity model developed by Ahn et al. (1995). Since the ground magnetic disturbance data are obtained from a single meridian chain of magnetometers (Alaska meridian chain) for an extended period of time (March 9 - April 27, 1978), they are expected to present the average picture of the electrodynamics over the entire polar ionosphere. A number of global features noted in this study are as follows: (1) The electric potential distribution is characterized by the so-called two cell convection pattern with the positive potential cell in the morning sector extending into the evening sector. (2) The auroral electrojet system is well developed during this time period with the signatures of DP-1 and DP-2 current systems being clearly discernable. It is also noted that the electric field seems to play a more important role than the ionospheric conductivity the conductivity over the poleward half of the westward electrojet in the morning sector while the conductivity enhancement seems to be more important over its equatorward half. (3) The global field-aligned current distribution pattern is quite comparable with the statistical result obtained by Iijima and Potemra (1976). However, the current density of Region 1 is much higher than that of Region 2 current at pointed out by pervious studies (e.g.; Kamide 1988). (4) The Joule heating occurs over a couple of island-like areas, one along the poleward side of the westward electrojet region in the afternoon sector. (5) The maximum average energy of precipitating electrons is found to be in the morning sector (07∼08 MLT) while the maximum energy flux is registered in the postmidnight sector (02 MLT). Thus auroral brightening and enhancement of ionospheric conductivity during disturbed period seem to be more closely associated with enhancement of particle flux rather than hardening of particle energy.

  • PDF

Dispersion Characteristics of Hazardous Elements for the Stream Sediments of Primary Channels in the Namhae-Hwngye area (남해-화개지역 1차 수계 하상퇴적토의 환경유해원소 분산특성)

  • Park, Yaung-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Hong, In-Hee;Lim, Sung-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.107-117
    • /
    • 2007
  • Dispersion characteristics and envirounmental impactes of the stream sediments were investigated and geochemical disaster in the Namhae-Hwagye area was predicted. Stream sediments having no possibility of contamination effect and representing drainage basins were collected. Major and hazardous elements concentrations were determined by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES have been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1'st and after that $HClO_4$, HF and HCl with $200^{\circ}C$ heating at 2'nd stage. Hazardous elements concentrations for the stream sediments in the Namhae area were Cu $5.66{\sim}168\;ppm$, Pb $18.0{\sim}40.7\;ppm$, Cr $21.6{\sim}147\;ppm$, Co $4.86{\sim}25.3\;ppm$. Hazardous elements concentrations for the stream sediments in the Hwagye area were Cu $16.4{\sim}41.2\;ppm$, Pb $26.5{\sim}37.5\;ppm$ Cr $79.6{\sim}153\;ppm$, Co $15.7{\sim}29.5\;ppm$. Concentration of Cu and Co in the stream sediments show a negative correlation with $SiO_2$ in all study area. According to E.I.(Enrichment Index) of stream sediments was not enriched in study area. And average E.I. was 0.35 (Namhae) and 0.56 (Hwagye) respectively. The stream sediments were enriched as in order of Pb > Cr > Co > Cu. And the average of Enrichment Factor (E.F.) was 0.46 to 2.84, respectively. E.F. concentration of Cu and Co were nearly similar enrichment characteristic but E.F. concentration of Cr were higher enrichnent characteristic in Namhae than Hwagye area. Pb was highly enriched in all study area but the tolerable level that used to investigate the enrichment degree of hazardous elements, was not exposed to harmful hazardous elements.