DOI QR코드

DOI QR Code

Recent research trends on transparent glass-ceramics as a white luminescent materials

백색 발광재료로서의 투명 결정화유리에 관한 최근 연구동향

  • Seunggu Kang (Department of Advanced Material Engineering, Kyonggi University)
  • 강승구 (경기대학교 신소재공학과)
  • Received : 2024.08.22
  • Accepted : 2024.09.04
  • Published : 2024.10.31

Abstract

White light-emitting diodes (W-LEDs) are widely used in displays and lighting due to their advantages of compact size, high efficiency, and long lifespan compared to traditional light sources. Glass-ceramics produced by inducing crystallization in amorphous glass through heating, finds applications in various high-performance fields. Its properties can be tailored through the addition of nucleating agents or phase separation phenomena. By forming nanometer-sized crystals, glass-ceramics can retain its characteristics while maintaining transparency in the visible range, making it suitable for a range of applications including optical switches, optical converters, lasers, medical devices, and sensors. Additionally, glass-ceramics containing rare earth elements, transition metals, quantum dots, and nanocrystals can convert blue or ultraviolet light into visible light, thereby enhancing the performance of W-LEDs. This paper explores the optical properties of glass-ceramics derived from oxide and fluoride glasses, its potential applications in W-LEDs, and recent research trends.

백색 발광 다이오드(W-LED)는 기존의 광원에 비해 소형, 고효율, 긴 수명의 장점으로 디스플레이 및 조명에 널리 사용되고 있다. 결정화유리는 비정질 유리를 가열하여 결정화를 유도한 소재로, 다양한 고성능 분야에 적용되며, 핵형성제 추가나 상분리 현상을 통해 특성을 조절할 수 있다. 나노미터 크기의 결정을 형성하면 가시광선에서 투명성을 유지하면서도 결정화유리의 특성을 보존할 수 있어 광 스위치, 광 변환기, 레이저, 의료 기기, 센서 등 다양한 응용 분야에 적합하다. 또한, 희토류, 전이 금속, 양자점, 나노결정을 포함한 결정화유리는 청색 또는 자외선을 가시광선으로 변환하여 W-LED의 성능을 개선시킬 수 있다. 본 논문은 산화물계 및 불화물계 유리로부터 얻어진 결정화유리의 광학적 특성, W-LED로의 활용 가능성 및 최근 연구 동향을 탐구하였다.

Keywords

Acknowledgement

이 논문은 2022학년도 경기대학교 연구년 과제로 지원받아 수행되었습니다. 또한 자료 검색 및 검토에 기여해 준 임유나 학생에게 감사를 표합니다.

References

  1. K. Ariane, A. Tamayo, A. Chorfa, F. Rubio and J. Rubio, "Optimization of the nucleating agent content for the obtaining of transparent fluormica glass-ceramics", Ceram. Int. 49 (2023) 9826.
  2. N. Ma, Z. Luo, H. Liang, L. He, G. Cai and A. Lu, "Near pure white light emission of CeO2-Dy2O3 codoped K2O-MgO-B2O3-P2O5 glasses and glass-ceramics", Opt. Mater. 152 (2024) 115431.
  3. L.R. Pinckney and G.H. Beall, "Microstructural evolution in some silicate glass-ceramics: A review", J. Am. Ceram. Soc. 91 (2008) 773.
  4. H. Masai, T. Ueno, T. Toda, Y. Takahashi and T. Fujiwara, "Processing and photoluminescence properties of surface crystallized ZnO glass-ceramics", J. Non-Cryst. Solids. 356 (2010) 3080.
  5. J. Chen and J.X. Zhao, "Upconversion nanomaterials: synthesis, mechanism, and application in sensing", Sensors. 12 (2012) 2414.
  6. Y. Jiang, C. Chen, B. Yu, Q. Li, Z. Niu, X. Cai and Y. Zhang, "Color tunable emission and temperature sensing performance in oxyfluoride glass ceramics containing Ce3+/Dy3+:Na5Y9F32 nanocrystals", J. Lumin. 256 (2023) 119627.
  7. M. Milanova, L. Aleksandrov, A. Yordanova, R. Iordanova, N.S. Tagiara, A. Herrmann, G. Gao, L. Wondraczek and E.I. Kamitsos, "Structural and luminescence behavior of Eu3+ ions in ZnO-B2O3-WO3 glasses", J. Non-Cryst. Solids. 600 (2023) 122006.
  8. T. Wang, C. Su, H. Zhang, X. Zou, Y. Yan and S. Wang, "Enhancing the orange luminescence behavior of the Li+ co-doped Ca2Ti2O6: Sm3+ transparent glassceramic", J. Non-Cryst. Solids 581 (2022) 121437.
  9. F. Jia, S. Xu, G. Zhang, T. Zhao, X. Zou and H. Zhang, "Effect of Mg2+/Sr2+ addition on luminescence properties of Dy3+ doped glass ceramics containing Ca2Ti2O6", Opt. Mater. 131 (2022) 112715.
  10. P.P. Pawar, S.R. Munishwar, S. Gautam and R.S. Gedam, "Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED", J. Lumin. 183 (2017) 79.
  11. M. Monisha, M.S. Murari, M.I. Sayyed, K. Naregundi, N. Al-Harbi and S.D. Kamath, "Judd-Ofelt analysis and luminescence characteristics of Eu3+ doped Nepheline (NaAlSiO4)-based glass ceramics for solid-state lighting applications", J. Non-Cryst. Solids 599 (2023) 121971.
  12. Z. Feng, J. Zhang, X. Xu, T. Zheng, Y. Guo and J. Lv, "Mechanoluminescence properties of Pr3+-doped B2O3-Al2O3-SrO system glass-ceramics", J. Non-Cryst. Solids 590 (2022) 121676.
  13. G.H. Beall and L.R. Pinckney, "Nanophase glass-ceramics", J. Am. Ceram. Soc. 82 (1999) 5.
  14. A.K. Jena and M.C. Chaturvedi, "Phase Transformation in Materials" (Prentice Hall, Englewood Cliffs, 1992) p. 220.
  15. H.E. Kissinger, "Reaction kinetics in differential thermal analysis", Anal. Chem. 29 (1957) 1702.
  16. S. Vyazovkin and A. Galukhin, "Problems with applying the ozawa-avrami crystallization model to non-isothermal crosslinking polymerization", Polymers 14 (2022) 693.
  17. D.P. Mukherjee and S.K. Das, "Influence of TiO2 content on the crystallization and microstructure of machinable glass-ceramics", J. As. Cer. S. 4 (2016) 55.
  18. G.S. Back, M.J. Yoon and W.G. Jung, "Effect of the Cr2O3 and TiO2 as nucleating agents in SiO2-Al2O3-CaO-MgO glass-ceramic system", Met. Mater. Int. 23 (2017) 798.
  19. J.A. Augis and J.E. Bennett, "Calculation of the avrami parameters for heterogeneous solid state reaction using a modification of the kissinger method", J. Therm. Anal. 13 (1978) 283.
  20. Z.Y. Merkit, H.O. Toplan and N. Toplan, "The crystallization kinetics of CaO-Al2O3-SiO2(CAS) glass-ceramics system produced from pumice and marble dust", J. Therm. Anal. Calorim. 134 (2018) 807.
  21. S.H. Im, Y. La, N. Kim, B. Ryu, T. Kim, J. Song and D. Yoon, "Effect of an electric field on the crystallization in a high-alkali containing glass system", J. Korean Phys. Soc. 57 (2010) 797.
  22. Z. Li, Y. Zhang, H. La, R. Zhu, G. El-Banna, Y. Wei and G. Han, "Upconverting NIR photons for bioimaging", Nanomaterials 5 (2015) 2148.
  23. L. Wang, Z. Guo, S. Wang, H. Zhang, H. Lv, T. Wang and C. Su, "Luminescence properties of Dy3+ doped glass ceramics containing Na3Gd (PO4)2", J. Non-Cryst. Solids. 543 (2020) 120091.
  24. H. Jo, M. Hwang, Y. Lee and J. Chung, "Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing", J. Korean Cryst. Growth Cryst. Technol. 33 (2023) 181.
  25. J.H. Choi, Y.H. Nam and K. Han, "Core characteristics and technology development status of optical glass materials for camera lenses", Ceramist. 25 (2022) 299.
  26. H. Liang, X. Liu, J. Tong, P. He, Z. Zhou, Z. Luo and A. Lu, "Structure, Judd-Ofelt analysis and spectra studies of Sm3+-doped MO-ZnO-B2O3-P2O5 (M = Mg, Ca, Sr, Ba) glasses for reddish-orange light application", Ceram. Int. 49 (2023) 15266.
  27. H.M. Elsaghier, A.R. Wassel, M.A. Hassan, S.Y. Marzouk and A. Samir, "Impact of ZnO on spectroscopic and luminescence characteristics of Sm2O3-SrO-B2O3 glasses for warm reddish orange light emitting applications", Mater. Res. Bull. 173 (2024) 112700.
  28. A. Yordanova, M. Milanova, R. Iordanova, M. Fabian, L. Aleksandrov and P. Petrova, "Network structure and luminescent properties of ZnO-B2O3-Bi2O3-WO3:Eu3+ Glasses", Materials 16 (2023) 6779.
  29. R. Klement, K. Drdlikova, D. Drdlik and K. Maca, "Photoluminescence of rare-earth/transition metal-doped transparent/translucent polycrystalline Al2O3 ceramics: A review", J. Am. Ceram. Soc. 106 (2023) 172.
  30. P. Varak, J. Baborak, E. Veron, A. Michalcova, J. Volf, M. Allix and P. Nekvindova, "Crystallization and luminescence properties of Er/Yb-doped glass-ceramics based on A2O-ZnO-SiO2 system (A = L i, Na, K, Cs)", J. Non-Cryst. Solids 626 (2024) 122783.
  31. Z. Hong, H. Yue, Z. Lin, X. Luo, H. Hou, S. Wu, F. Lai, W. Wang, W. You and J. Huang, "Photoluminescence properties of Dy3+/Sm3+ co-doped gallium silicate glass-ceramics for solid-state warm white lighting", J. Non-Cryst. Solids 628 (2024) 122837.
  32. J.L. Adam, C. Ricordel and J. Lucas, "New compositions of low phonon energy fluoride and chloro-fluoride glasses", J. Non-Cryst. Solids 213&214 (1997) 30.
  33. M.J. Dejneka "The luminescence and structure of novel transparent oxyfluoride glass-ceramics", J. Non-Cryst. Solids 239 (1998) 149.
  34. L. Farahinia, M. Rezvani and A.A. Kordlar, "Optical properties and luminescence behavior of Tb3+-Doped SiO2-Al2O3-BaO-BaF2 oxyfluoride glasses and glass ceramics", Ceram. Int. 50 (2024) 17624.
  35. S.A. Polishchuk, L.N. Ignat'eva, Y.V. Marchenko and V.M. Bouznik, "Oxyfluoride glasses (A review)", Glass Phys. Chem. 37 (2011) 1.
  36. K. Bansal, N.K. Mishra, I. Abdullahi, P.J. Singh, M. Tyagi and S. Singh, "Studies of luminescence traits and Judd-Ofelt analysis of Sm3+ activated oxyfluoride glasses", Opt. Mater. 147 (2024) 114579.
  37. L. Huang, S. Jia, Y. Li, S. Zhao, D. Deng, H. Wang, G. Jia, Y. Hua and S. Xu, "Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals", Nucl. Instrum. Methods Phys. Res. Sect. A 788 (2015) 111.
  38. J. Yan, Z. Jia, J. Wang, C. Zhang, F. Wang, Y. Mei, F. Meng, Y. Ohishi, D. Zhang, W. Qin, F. Wang and G. Qin, "Intense O+E+S-band emission from Pr3+-doped ZnF2-based glasses", Opt. Mater. Express 14 (2024) 367.
  39. Y. Yang, B. Mei, Z. Zhou, W. Li, Z. Sun, Y. Zhang and X. Liu, "Fabrication and spectroscopic investigations on Er3+, Ho3+:SrF2 transparent ceramics for 2.7 ㎛ emission", J. Eur. Ceram. Soc. 42 (2022) 1722.
  40. A. Cheddadi, R. Fartas, M. Diaf and H. Boubekri, "Spectroscopic investigations of Tm3+ doped CdF2 single crystals and infrared laser potentialities", J. Lumin. 265 (2024) 120237.
  41. P. Zhang, J. Yin, B. Zhang, L. Zhang, J. Hong, J. He and Y. Hang, "Growth and optical characterization of Ho3+ doped PbF2 single crystal", Adv. Solid State Lasers AM5A.4 (2014).
  42. M. Kim, Y.J. Zhao, A.J. Freeman and W. Mannstadt, "Screened-exchange determination of the optical properties of large gap insulators: CaF2", Appl. Phys. Lett. 84 (2004) 3579.
  43. S.R. Jaiswal, P.A. Nagpure, V.B. Bhatkar and S.K. Omanwar, "Energy transfer and visible quantum cutting in BaF2 co-doped with Gd3+, Eu3+ phosphor synthesis via wet chemical method followed by reactive atmosphere process", Int. J. Lumin. Appl. 6 (2016) 131.
  44. D.L. Alov and S.I. Rybchenko, "Luminescence of orthorhombic PbF2", J. Phys.: Condens. Matter. 7 (1995) 1475.
  45. I.N. Ogorodnikov, V.A. Pustovarov, S.I. Omelkov, L.I. Isaenko, A.P. Yelisseyev, A.A. Goloshumova and S.I. Lobanov, "A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals", J. Lumin. 145 (2014) 872.
  46. A. Miguel, R. Morea, M.A. Arriandiaga, M. Hernandez, F.J. Ferrer, C. Domingo, J.M. Fernandez-Navarro, J. Gonzalo, J. Fernandez and R. Balda, "Structural, optical, and spectroscopic properties of Er3+-doped TeO2-ZnO-ZnF2 glass-ceramics", J. Eur. Ceram. Soc. 34 (2014) 3959.
  47. F. Zeng, G. Ren, X. Qiu, Q. Yang and J. Chen, "The effect of PbF2 content on the microstructure and upconversion luminescence of Er3+-doped SiO2-PbF2-PbO glass ceramics", J. Non-Cryst. Solids 354 (2008) 3428.
  48. C.R. Kesavulu, M.Y. Yoo, J.H. Lee, K.S. Lim, P. Dharmaiah, C.K. Jayasankar and P. Babu, "Optical and upconversion properties of Er3+-doped oxyfluoride transparent glass-ceramics containing SrF2 nanocrystals", J. Mater. Res. 28 (2013) 1481.
  49. M. Secu, C.E. Secu, S. Polosan, G. Aldica and C. Ghica, "Crystallization and spectroscopic properties of Eu-doped CaF2 nanocrystals in transparent oxyfluoride glass-ceramics", J. Non-Cryst. Solids 355 (2009) 1869.
  50. M. Dejneka, E. Snitzer and R.E. Riman, "Blue, green and red fluorescence and energy transfer of Eu3+ in fluoride glasses", J. Lumin. 65 (1995) 227.
  51. A. Herrmann and D. Ehrt, "Green and red Er3+ photoluminescence behavior in various fluoride glasses", Int. J. Appl. Glass Sci. 1 (2010) 341.
  52. G. Lakshminarayana, E.M. Weis, B.L. Bennett, A. Labouriau, D.J. Williams, J.G. Duque, M.S. Bahae and M.P. Hehlen, "Structural, thermal, and luminescence properties of cerium-fluoride-rich oxyfluoride glasses", Opt. Mater. 35 (2012) 117.
  53. K. Biswas, A.D. Sontakke, J. Ghosh and K. Annapurna, "Enhanced blue emission from transparent oxyfluoride glass-ceramics containing Pr3+:BaF2 nanocrystals", J. Am. Ceram. Soc. 93 (2010) 1010.
  54. W. Chang, L. Li, M. Dou, Y. Yan, S. Jiang, Y. Pan, M. Cui, Z. Wu and X. Znou, "Dual-mode downconversion luminescence with broad near-ultraviolet and blue light excitation in Tm3+/Yb3+ codoped oxy-fluoride glasses for c-Si solar cells", Mater. Res. Bull. 112 (2019) 109.
  55. X. Qiao, X. Fan, J. Wang and M. Wang, "Luminescence behavior of Er3+ ions in glass-ceramics containing CaF2 nanocrystals", J. Non-Cryst. Solids 351 (2005) 357.
  56. V.A. Kravets, E.V. Ivanova, K.N. Orekhova, M.A. Petrova, G.A. Gusev, A.N. Trofimov and M.V. Zamoryanskaya, "Synthesis and luminescent properties of bismuth borosilicate glass doped with Eu3+", J. Lumin. 226 (2020) 117419.
  57. H. Lee, W.J. Chung and W.B. Im, "Pr3+-doped oxyfluoride glass ceramic as a white LED color converter wide color gamut", J. Lumin. 236 (2021) 118064.
  58. F. Ma, F. Su, R. Zhou, Y. Ou, L. Xie, C. Liu, D. Jiang, Z. Zhang, Q. Wu, L. Su and H. Liang, "The defect aggregation of RE3+ (RE = Y, La ~ Lu) in MF2 (M = Ca, Sr, Ba) fluorites", Mater. Res. Bull. 125 (2020) 110788.
  59. Q. Luo, X. Qiao, X. Fan, H. Yang, X. Zhang, S. Cui, L. Wang and G. Wang, "Luminescence behavior of Ce3+ and Dy3+ codoped oxyfluoride glasses and glass ceramics containing LaF3 nanocrystals", J. Appl. Phys. 105 (2009) 043506.