DOI QR코드

DOI QR Code

Preparation and Microstructural Characteristics of Ti Nanopowder by Ball Milling and Dehydrogenation of TiH2 Powder

TiH2 분말의 볼 밀링과 탈수소화에 의한 Ti 나노분말 제조 및 미세조직 특성

  • Ji Young Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Eui Seon Lee (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ji Won Choi (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Youngmin Kim (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Sung-Tag Oh (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 김지영 (서울과학기술대학교 신소재공학과) ;
  • 이의선 (서울과학기술대학교 신소재공학과) ;
  • 최지원 (서울과학기술대학교 신소재공학과) ;
  • 김영민 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2024.07.26
  • Accepted : 2024.08.19
  • Published : 2024.08.28

Abstract

This study analyzed the influence of ball size and process control agents on the refinement and dehydrogenation behavior of TiH2 powder. Powders milled using ZrO2 balls with diameters of 0.1 mm, 0.3 mm, and 0.3+0.5+1 mm exhibited a bimodal particle size distribution, of which the first mode had the smallest size of 0.23 ㎛ for the 0.3 mm balls. Using ethanol and/or stearic acid as process control agents was effective in particle refinement. Thermogravimetric analysis showed that dehydrogenation of the milled powder started at a relatively low temperature compared to the raw powder, which is interpreted to have resulted from a decrease in particle size and an increase in defects. The dehydrogenation kinetics of the TiH2 powder were evaluated by the magnitude of peak shift with heating rates using thermogravimetric analysis. The activation energy of the dehydrogenation reaction, calculated from the slope of the Kissinger plot, was measured to be 228.6 kJ/mol for the raw powder and 194.5 kJ/mol for the milled powder. TEM analysis revealed that both the milled and dehydrogenated powders showed an angular shape with a size of about 200 nm.

Keywords

Acknowledgement

이 논문은 한국연구재단의 PM 연구실 회복 지원을 받아 수행된 연구입니다(PM2023ST0011).

References

  1. M. J. Donachie, Titanium: A Technical Guide, 2nd Edition-ASM international, Ohio (2000)
  2. L. Kang and C. Yang: Adv. Eng. Mater., 21 (2019) 1801359.
  3. Z. Z. Fang, J. D. Paramore, P. Sun, K. S. R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman and M. Free: Int. Mater. Rev., 63 (2018) 407.
  4. B. B. Panigrahi, M. M. Godkhindi, K. Das, P. G. Mukunda, V. V. Dabhade and P. Ramakrishnan: J. Mater. Res., 20 (2005) 827.
  5. V. V. Dabhade, T. R. Rama Mohan and P. Ramakrishnan: Fig. 7. TEM image of (a) ball-milled and (b) dehydrogenated powder, and (c) SAED pattern of the dehydrogenated powder. Powder Technol., 171 (2007) 177.
  6. V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Eng. A., 356 (2003) 1.
  7. J. Y. Kim, E. S. Lee, J. W. Choi, Y. Kim and S.-T. Oh: J. Powder Mater., 31 (2024) 132.
  8. H. Shin, S. Lee, H. S. Jung and J.-B. Kim: Ceram. Int., 39 (2013) 8963.
  9. C. Suryanarayana: Prog. Mater. Sci., 46 (2001) 1.
  10. L. G. Austin, K. Shoji and P. T. Luckie: Powder Technol., 14 (1976) 71.
  11. S.-M. Hong, J.-J. Park, E.-K. Park, K.-Y. Kim, J.-G. Lee, M.-K. Lee, C.-K. Rhee and J. K. Lee: Powder Technol., 274 (2015) 393.
  12. J. Wachlmayr, C. Hannesschlaeger, A. Speletz, T. Barta, A. Eckerstorfer, C. Siligan and A. Horner: Nanoscale Adv., 4 (2022) 58.
  13. Y. Zhang, C. Wang, X. Guo and Y. Chen: Mater. Manuf. Process., 34 (2019) 921.
  14. A. Rasooli, M. A. Boutorabi, M. Divandari and A. Azarniya: Bull. Mater. Sci., 36 (2013) 301.
  15. H. E. Kissinger: Anal. Chem., 29 (1957) 1702.
  16. K. G. Prashanth: Mater. Manuf. Process., 25 (2010) 974.
  17. C. Wang, L. Pan, Y. Zhang, S. Xiao and Y. Chen: Int. J. Hydrog. Energy., 41 (2016) 14836.
  18. Y. Zhang, Z. Z. Fang, L. Xu, P. Sun, B. V. Devener, S. Zheng, Y. Xia, P. Li and Y. Zhan: J. Phys. Chem. C., 122 (2018) 20691.