• Title/Summary/Keyword: Heat-shock factor

Search Result 125, Processing Time 0.026 seconds

Transcriptome Analysis to Characterize the Immune Response of NecroX-7 in Mouse CD4+ T Cells

  • Kim, Eun-Jung
    • Biomedical Science Letters
    • /
    • v.21 no.2
    • /
    • pp.60-68
    • /
    • 2015
  • NecroX-7 is a novel small compound of the NecroX series based on the indole moiety, which has potent cytoprotective and antioxidant properties. We previously detected potential immune regulatory effects of NecroX-7 in immune related diseases like Graft-versus-Host Disease. However, the function and the underlying mechanisms of immunological effects of NecroX-7 in the immune system have not been well established. In this study, we investigated the immune response characterization of differentially expressed genes of NecroX-7 administration in $CD4^+$ T cells by microarray analysis. $CD4^+$ T cells stimulated with NecroX-7 ($40{\mu}M$) or vehicle for 72 hours resulted in the identification of 337 differentially expressed genes (1.5 fold, P<0.05) by expression profiling analysis. Twenty eight of the explored NecroX-7-regulated genes were related to immune system processes. These genes were validated by quantitative real-time PCR. The most significant genes were glutathione reductase, eukaryotic translation elongation factor 1, lymphotoxin-alpha, heat shock protein 9 and chloride intracellular channel protein 4. These findings demonstrate the strongly immune response of NecroX-7 in $CD4^+$ T cells, suggesting that cytoprotection and immune regulation may underlie the critical aspects of NecroX-7 exposure.

Mechanism of Far-infrared how to affect the human body (원적외선의 인체작용메카니즘)

  • Kim, Jae-Yoon;Park, Young-Han;Park, Don-Mork;Park, Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.477-482
    • /
    • 2001
  • Until now, it has not been well known for Far-infrared(FIR) how to affect to the human body. We introduced and presumed the mechanism of FIR based on molecular biology in this study, as below. The human body is composed of proteins which get easily changed by a thermal factor (about 42 $^{\circ}$C over). FIR with low temperature can deeply penetrate on the human body composed things without troublesome, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). When FIR penetrated on the human body, it would inhibit the abnormal genes and cells expression, and then information of DNA and RNA would be reexpressed for arranging DNA and RNA abnormal state. As FIR's receptors in the body, it colud be presumed that N-glycosyl linkage of purine and deoxyribose, RNA splicing process, and heat shock protein.

  • PDF

The Potato Transcriptional Co-activator StMBF1 Is Up-regulated in Response to Oxidative Stress and Interacts with the TATA-box Binding Protein

  • Arce, Debora Pamela;Tonon, Claudia;Zanetti, Maria Eugenia;Godoy, Andrea Veronica;Hirose, Susumu;Casalongue, Claudia Anahi
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.355-360
    • /
    • 2006
  • To gain a better understanding on the function of the potato Solanum tuberosum Multiprotein Bridging Factor 1 protein (StMBF1) its interaction with the TATA box binding protein (TBP) was demonstrated. In addition we reported that StMBF1 rescues the yeast mbf1 mutant phenotype, indicating its role as a plant co-activator. These data reinforce the hypothesis that MBF1 function is also conserved among non closely related plant species. In addition, measurement of StMBF1 protein level by Western blot using anti-StMBF1 antibodies indicated that the protein level increased upon $H_2O_2$ and heat shock treatments. However, the potato $\beta$-1,3-glucanase protein level was not changed under the same experimental conditions. These data indicate that StMBF1 participates in the cell stress response against oxidative stress allowing us to suggest that MBF1 genes from different plant groups may share similar functions.

An Experimental Study on the Effect of Low Level Laser and Some Cytokines on Gene Expression of Human Gingival Fibroblasts (저출력레이저조사와 염증성 자극물질이 치은섬유아세포의 유전자 발현에 미치는 영향에 관한 실험적 연구)

  • Jung-Min Kim;Keum-Back Shin
    • Journal of Oral Medicine and Pain
    • /
    • v.19 no.2
    • /
    • pp.57-71
    • /
    • 1994
  • Gingival fibroblasts were cultured and subjected to the test of Northern blot analysis for the demonstration of various mRNA expression in response to the low level laser treatment. For duplication of in vivo. Wound healing process, fibroblasts were pretreated with proinflammatory cytokine interleukin-1$\beta$(IL-1$\beta$) or mitogenic substance phorbol 12-myristate 13-acetate(PMA) prior to laser irradiation. The results were as follows : 1. By the laser irradiation, the gene expression of collagen type I was markedly increased I n gingival fibroblasts, especially in the case of PMA pretreatment. The gene expression of collagen type IV, however, was not only affected by laser irradiation but also by chemical cell stimulation. 2. Oncogene v-myc expression was affected by both laser irradiation and IL-1$\beta$ or PMA stimulation, But v-fos gene expression was not detected in any case of this experimental system. 3. Heat shock gene(Hsp 70)was expressed constiutively, but slightly increased by laser irradiation. 4. mRNA of fibroblast growth factor(FGF) was induced by both laser irradiation and IL-1$\beta$ or PMA treatment.

  • PDF

RAS inhibitor를 이용한 항암제의 개발에 관하여

  • 어미숙
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.32-35
    • /
    • 1993
  • ras는 활성화 형태인 GTP bound form과 비활성화 형태인 GDP bound form의 두 형태로 존재하며 두 형태를 매개하는 regulatory protein들에 의해 그 activity가 조절된다. 또한 ras는 GTP와 GDP에 강한 친화성이 있으며 세포내에는 GTP보다 GDP가 더 많이 있어서 평소에는 ras가 GDP와 결합하고 있다가 활성화될때만 GTP와 결합하는 것으로 추정된다. GDP bound ras는 guanine nucloetide exchange protein(GEP)에 의해 활성화된 GTP bound form으로 전환되며 ras의 기능이 발휘된 후에는 GTPase activating protein(GAP)에 의해 비활성화된다. Yeast의 경우 IRA1과 2의 product가 GAP의 역할을 하는 것으로 알려져 있고 CDC25 gene의 product가 GEP의 기능을 담당하는 것으로 알려져 있다. NF1 gene은 Von Recklinghausen Neurofibromatosis Type I 질병을 가진 환자에게서 발견되었는데 부분적으로 sequencing한 결과에 따르면 yeast의 IRA1/2, mammalian GAP gene product와 protein homology가 높은 것으로 나타났다. Yeast의 경우 IRA1/2 gene의 손실이나 mammalian ras gene의 transformation으로 인한 heat shock sensitivity가 NF1 gene(2,3) 혹은 GAP(4)의 expression으로 suppression된 것으로 보아 NF1이 GAP protein으로서 ras를 불활성화 시킨다는 것이 판명되었다. 결론적으로 ras의 활성은 GTP bound 혹은 GDP bound의 양쪽형태를 이동하면서 조절되는데 이 기능은 GAP과 GEP 또는 그의 유사 protein들에 의해 수행되며 이러한 regulatory protein들은 growth factor, cytokine 그리고 protein kinase 같은 signal에 의해 활성화된다고 생각된다. 본 총설에서는 ras protein의 여러가지 성질보다는 ras의 modification과 관련하여 항암제로 사용할 수 있는 ras에 specific한 약품개발의 가능성과 현재 알려진 ras의 inhibitor를 중심으로 논하고자 한다.

  • PDF

Lung Injury Indices Depending on Tumor Necrosis Factor-$\alpha$ Level and Novel 35 kDa Protein Synthesis in Lipopolysaccharide-Treated Rat (내독소처치 흰쥐에서 Tumor Necrosis Factor-$\alpha$치 상승에 따른 폐손상 악화 및 35 kDa 단백질 합성)

  • Choi, Young-Mee;Kim, Young-Kyoon;Kwon, Soon-Seog;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1236-1251
    • /
    • 1998
  • Background : TNF-$\alpha$ appears to be a central mediator of the host response to sepsis. While TNF-$\alpha$ is mainly considered a proinflammatory cytokine, it can also act as a direct cytotoxic cytokine. However, there are not so many studies about the relationship bet ween TNF-$\alpha$ level and lung injury severity in ALI, particularly regarding the case of ALI caused by direct lung injury such as diffuse pulmonary infection. Recently, a natural defense mechanism, known as the stress response or the heat shock response, has been reported in cellular or tissue injury reaction. There are a number of reports examining the protective role of pre-induced heat stress proteins on subsequent LPS-induced TNF-$\alpha$ release from monocyte or macrophage and also on subsequent LPS-induced ALI in animals. However it is not well established whether the stress protein synthesis such as HSP can be induced from rat alveolar macrophages by in vitro or in vivo LPS stimulation. Methods : We measured the level of TNF-$\alpha$, the percentage of inflammatory cells in bronchoalveolar lavage fluid, protein synthesis in alveolar macrophages isolated from rats at 1, 2, 3, 4, 6, 12, and 24 hours after intratracheal LPS instillation. We performed histologic examination and also obtained histologic lung injury index score in lungs from other rats at 1, 2, 3, 4, 6, 12, 24 h after intratracheal LPS instillation. Isolated non-stimulated macrophages were incubated for 2 h with different concentration of LPS (0, 1, 10, 100 ng/ml, 1, or 10 ${\mu}g/ml$). Other non-stimulated macrophages were exposed at $43^{\circ}C$ for 15 min, then returned to at $37^{\circ}C$ in 5% CO2-95% for 1 hour, and then incubated for 2 h with LPS (0, 1, 10, 100ng/ml, 1, or 10 ${\mu}g/ml$). Results : TNF-$\alpha$ levels began to increase significantly at 1 h, reached a peak at 3 h (P<0.0001), began to decrease at 6 h, and returned to control level at 12 h after LPS instillation. The percentage of inflammatory cells (neutrophils and alveolar macrophages) began to change significantly at 2 h, reached a peak at 6 h, began to recover but still showed significant change at 12 h, and showed insignificant change at 24 h after LPS instillation compared with the normal control. After LPS instillation, the score of histologic lung injury index reached a maximum value at 6 h and remained steady for 24 hours. 35 kDa protein band was newly synthesized in alveolar macrophage from 1 hour on for 24 hours after LPS instillation. Inducible heat stress protein 72 was not found in any alveolar macrophages obtained from rats after LPS instillation. TNF-$\alpha$ levels in supernatants of LPS-stimulated macro phages were significantly higher than those of non-stimulated macrophages(p<0.05). Following LPS stimulation, TNF-$\alpha$ levels in supernatants were significantly lower after heat treatment than in those without heat treatment (p<0.05). The inducible heat stress protein 72 was not found at any concentrations of LPS stimulation. Whereas the 35 kDa protein band was exclusively found at dose of LPS of 10 ${\mu}g/ml$. Conclusion : TNF-$\alpha$ has a direct or indirect close relationship with lung injury severity in acute lung injury or acute respiratory distress syndrome. In vivo and in vitro LPS stimulation dose not induce heat stress protein 72 in alveolar macrophages. It is likely that 35 kDa protein, synthesized by alveolar macrophage after LPS instillation, does not have a defense role in acute lung injury.

  • PDF

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377 (고온내성 연료용 알코올 효모균주 Saccharomyces cerevisiae KNU5377에서 HSF1 유전자의 변이주 구축)

  • Kim Il-Sup;Yun Hae-Sun;Choi Hye-Jin;Sohn Ho-Yong;Yu Choon-Bal;Kim Jong-Guk;Jin Ing-Nyol
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.454-458
    • /
    • 2006
  • HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.

Heat shock protein X purified from Mycobacterium tuberculosis enhances the efficacy of dendritic cells-based immunotherapy for the treatment of allergic asthma

  • Kim, Hye-Young;Kang, Hyun Kyu;Cho, Joon;Jung, In Duk;Yoon, Gun Young;Lee, Min-Goo;Shin, Sung Jae;Park, Won Sun;Park, Jong-Hwan;Ryu, Seung-Wook;Park, Yeong-Min;You, Ji Chang
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.178-183
    • /
    • 2015
  • Dendritic cells play an important role in determining whether na${\ddot{i}}$ve T cells mature into either Th1 or Th2 cells. We determined whether heat-shock protein X (HspX) purified from Mycobacterium tuberculosis regulates the Th1/Th2 immune response in an ovalbumin (OVA)-induced murine model of asthma. HspX increased interferon-gamma, IL-17A, -12 and transforming growth factor (TGF)-${\beta}$ production and T-bet gene expression but reduced IL-13 production and GATA-3 gene expression. HspX also inhibited asthmatic reactions as demonstrated by an increase in the number of eosinophils in bronchoalveolar lavage fluid, inflammatory cell infiltration in lung tissues, airway luminal narrowing, and airway hyper-responsiveness. Furthermore, HspX enhanced OVA-induced decrease of regulatory T cells in the mediastinal lymph nodes. This study provides evidence that HspX plays critical roles in the amelioration of asthmatic inflammation in mice. These findings provide new insights into the immunotherapeutic role of HspX with respect to its effects on a murine model of asthma.

Roles of TLR-4 and NF-κB in Interleukin-6 Expression Induced by Heat Shock Protein 90 in Vascular Smooth Muscle Cells (혈관평활근세포에서 HSP90에 의한 IL-6 발현에 TLR-4와 NF-κB의 작용)

  • Rhim, Byung-Yong;Kim, Kang-Seong;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1637-1643
    • /
    • 2008
  • This study has investigated whether extracellular HSP90 predisposes vascular smooth muscle cells (VSMCs) to pro-inflammatory phenotype. Exposure of rat aortic smooth muscle cells to HSP90 not only enhanced IL-6 release but also profoundly induced IL-6 transcript via promoter activation. HSP90-induced IL-6 promoter activation was suppressed by dominant-negative forms of Toll-like receptor (TLR)-4 and myeloid differentiation factor 88 (MyD88), but not by dominant-negative-forms of TLR-3 and TIR-domain-containing adapter-inducing interferon-${\beta}$ (TRIF). Curcumin, which inhibits dimerization of TLR-4, also attenuated the IL-6 induction by HSP90. Mutation at the NF-${\kappa}B$- or C/EBP-binding site in the IL-6 promoter region suppressed the promoter activation in response to HSP90. The gene delivery of $I{\kappa}B$ using recombinant adenoviruses and treatment with resveratrol, which inhibit NF-${\kappa}B$ activity, attenuated the HSP90-induced IL-6 release from VSMCs. The present study proposes that extracellular HSP90 would contribute to inflammatory reaction in the stressed vasculature by inducing IL-6 in VSMCs, and that TLR-4 and NF-${\kappa}B$ would play active roles in the process.

A Voltage Drops Computation Program on Multi-Distributed Random Loads (다중 분산부하 전압강하산정 프로그램)

  • Kang, Cha-Nyeong;Kwon, Sae-Hyuk;Cho, Sung-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.64-70
    • /
    • 2007
  • A voltage drop in the electrical circuit must be unavoidable. The voltage drop in the electrical circuit means a loss of heat. The heat lost would change the characteristics of the insulator and thus, the insulating performance would be towered resulting in electric leakage, electric shock, power failure, fire and other accidents. Hence, an optimized design against the voltage drop in the electrical circuit must be an important factor determining safety and economy of electrical facilities. This study analyzed the effects of voltage drop on the electrical circuit for such low-voltage electrical facilities requiring the public safety foremost and subject to multi-distributed random loads as street lamps, buildings and subway stations, and thereupon, developed an optimized voltage drop computation program to enhance safety and economy of those electrical facilities.