References
- Banzet, N., Richaud, C., Deveraux, Y., Kazmier, M. and Gagnon, J. (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptative response in tomato cells. Plant J. 13, 519-527 https://doi.org/10.1046/j.1365-313X.1998.00056.x
- Brendel, C., Gelman, L. and Auwerx, J. (2002) Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol. Endocrinol. 16, 1367-1377 https://doi.org/10.1210/me.16.6.1367
- Busk, P., Wulf-Andersen, L., Strom, C., Enevoldsen, M., Thirstrup, K., Haunso, S. and Sheikh, S. (2003) Multiprotein bridging factor 1 cooperates with c-jun and is neccesary for cardiac hypertrophy in vitro. Exp. Cell. Res. 286, 102-114 https://doi.org/10.1016/S0014-4827(03)00091-0
- Dat, J. F., Foyer, C. H. and Scott, I. M. (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118, 1455-1461 https://doi.org/10.1104/pp.118.4.1455
- Godoy, A.V., Zanetti, M. E., San Segundo, B., Casalongué, C. A. (2001) Identification of a putative Solanum tuberosum transcriptional coactivator up-regulated in potato tubers by Fusarium solani f. sp. eumartii infection and wounding. Physiol. Plant. 112, 217-222 https://doi.org/10.1034/j.1399-3054.2001.1120210.x
- Harlow, E. and Lane D. (1988) Antibodies. A laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, USA
- Jindra, M.G. I., Uhlirova, M., Okabe, M., Hiromi, Y. and Hirose, S. (2004) Coactivator MBF1 preserves the redox-dependent AP-1 activity during oxidative stress in Drosophila. EMBO. J. 23, 3538-3547 https://doi.org/10.1038/sj.emboj.7600356
- Kabe, Y., Goto, M., Shima, D., Imai, T., Wada, T., Morohashi, K., Shirakawa, M., Hirose, S. and Handa, H. (1999) The role of human MBF1 as a transcriptional coactivator. J. Biol. Chem. 274, 34196-34202 https://doi.org/10.1074/jbc.274.48.34196
- Lee, G. H. and Vierling, E. (2000) A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatures protein. FASEB J. 13, 833-842
- Li, F. Q., Ueda, H. and Hirose, S. (1994) Mediators of activation of fushi tarazu gene transcription by BmFTZ-F1. Mol. Cell. Biol. 14, 3013-3021 https://doi.org/10.1128/MCB.14.5.3013
- Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissues cultures. Physiol. Plant. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Pugh, B. F. (2000) Control of gene expression through regulation of the TATA-binding protein. Gene 255, 1-14 https://doi.org/10.1016/S0378-1119(00)00288-2
- Schett, G., Steiner, C. W., Groger, M., Winkler, S., Graninger, W., Smolen, J., Xu, Q. and Steiner, G. (1999) Activation of Fas inhibits heat induced activation of HSF1 and up-regulation of HSP70. FASEB J. 13, 833-842 https://doi.org/10.1096/fasebj.13.8.833
- Suzuki, N., Rizhsky, L., Liang, H., Shuman, J., Shulaev, V. and Mittler, R. (2005) Enhanced tolerance to environmental stress in transgenic plants expressing the transcriptional coactivator multiprotein bridging factor 1c. Plant Physiol. 139, 1313-1322 https://doi.org/10.1104/pp.105.070110
- Swaffield, J. C. and Johnston, S. A. (1996) Affinity purification of proteins binding to GST fusion proteins. Curr. Prot. Mol. Biol. John Wiley and Sons, Inc., USA
- Takemaru, K., Harashima, S., Ueda, H. and Hirose, S. (1998) Yeast coactivator MBF1 mediates GCN4-dependent transcriptional activation. Mol. Cell. Biol. 18, 4971-4976 https://doi.org/10.1128/MCB.18.9.4971
- Takemaru, K., Li, F. Q., Ueda, H. and Hirose, S. (1997) Multiprotein bridging factor 1 (MBF1) is an evolutionarily conserved transcriptional coactivator that connects a regulatory factor and TATA element-binding protein. Proc. Natl. Acad Sci. USA 94, 7251-7256 https://doi.org/10.1073/pnas.94.14.7251
- Tonón, C., Daleo, G. and Oliva, O. (2001) An acidic b-1,3 glucanase from potato tubers appears to be patatin. Plant Physiol. Biochem. 39, 849-854 https://doi.org/10.1016/S0981-9428(01)01311-0
- Tonón, C., Guevara, G., Oliva, C. and Daleo, G. (2002) Isolation of a potato acidic 39 kDa b-1,3 glucanase with antifungal activity against Phytophthora infestans and analysis of its expression in potato cultivars differing in their degrees of field resistance. J. Phytopatol. 150, 189-195 https://doi.org/10.1046/j.1439-0434.2002.00729.x
- Tsuda, K., Tsuji, T., Hirose, S. and Yamazaki, K. (2004) Three Arabidopsis MBF1 homologs with distinct expression profiles play roles as transcriptional co-activators. Plant Cell Physiol. 45, 225-231 https://doi.org/10.1093/pcp/pch017
- Tsuda, K. and Yamazaki, K. (2004) Structure and expression analysis of three subtypes of Arabidopsis MBF1 genes. Biochim. Biophys. Acta 1680, 1-10 https://doi.org/10.1016/j.bbaexp.2004.08.004
- Yano, A., Suzuki K., Uchimiya, H. and Shinshi, H. (1998) Induction of Hypersensitive Cell Death by a Fungal Protein in Cultures of Tobacco Cells. Mol. Plant Microbe Interaction 11, 115-123 https://doi.org/10.1094/MPMI.1998.11.2.115
- Zanetti, M. E., Blanco, F. A., Daleo, G. R. and Casalongue, C. A (2003) Phosphorylation of a member of the MBF1 transcriptional co-activator family, StMBF1, is stimulated in potato cell suspensions upon fungal elicitor challenge. J. Exp. Bot. 54, 623-632 https://doi.org/10.1093/jxb/erg061
- Zanetti, M. E., Chan, R. L., Godoy, A. V., Gonzalez, D. H. and Casalongué, C. A. (2004) Homeodomain-leucine zipper proteins interact with a plant homologue of the transcriptional co-activator multiprotein bridging factor 1. J. Biochem. Mol. Biol. 37, 320-324 https://doi.org/10.5483/BMBRep.2004.37.3.320
- Zhu, G., La Gier, M. J., Hirose, S. and Keithly, J. S. (2000) Cryptosporidium parvum: functional complementation of a parasite transcriptional coactivator CpMBF1 in yeast. Exp. Parasitol. 96, 195-201 https://doi.org/10.1006/expr.2000.4574
Cited by
- The grape VvMBF1 gene improves drought stress tolerance in transgenic Arabidopsis thaliana vol.118, pp.3, 2014, https://doi.org/10.1007/s11240-014-0508-2
- The analysis of an Arabidopsis triple knock-down mutant reveals functions for MBF1 genes under oxidative stress conditions vol.167, pp.3, 2010, https://doi.org/10.1016/j.jplph.2009.09.003
- Human multiprotein bridging factor 1 and Calmodulin do not interact in vitro as confirmed by NMR spectroscopy and CaM-agarose affinity chromatography vol.80, pp.1, 2011, https://doi.org/10.1016/j.pep.2011.07.001
- Antarctic Moss Multiprotein Bridging Factor 1c Overexpression in Arabidopsis Resulted in Enhanced Tolerance to Salt Stress vol.8, 2017, https://doi.org/10.3389/fpls.2017.01206
- Reduced tolerance to abiotic stress in transgenic Arabidopsis overexpressing a Capsicum annuum multiprotein bridging factor 1 vol.14, pp.1, 2014, https://doi.org/10.1186/1471-2229-14-138
- Over-expression of a chimeric gene of the transcriptional co-activator MBF1 fused to the EAR repressor motif causes developmental alteration in Arabidopsis and tomato vol.175, pp.1-2, 2008, https://doi.org/10.1016/j.plantsci.2008.01.019
- Honey can repairing damage of liver tissue due to protein energy malnutrition through induction of endogenous stem cells vol.10, pp.6, 2017, https://doi.org/10.14202/vetworld.2017.711-715