• Title/Summary/Keyword: Heat-responsive element

Search Result 11, Processing Time 0.018 seconds

An Investigation on the Thermal Characteristics of Heat-Responsive Element of Sprinkler Head (스프링클러헤드 감열부의 열적 특성에 관한 연구)

  • You, Woo-Jun;Moon, Hyo-Jun;Youm, Moon-Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.79-84
    • /
    • 2012
  • In this study thermal characteristics of heat-responsive element considering conduction, convection and rate of change of element using Response Time Index (RTI) applied to sensitivity test of sprinkler head at home and aborad are theoretically investigated. Analytic solution of temperature distributions with radial direction and time is obtained form energy transport equations, non-homogeneous 2th order partial differential equation, applying to constant wall temperature and symmetric condition in order to analyze thermal characteristics of heat-responsive element for circular cylindrical geometry. Base on the results, the analytic method of this study is fundamental data to practical use for sensitivity test of sprinkler head and design of heat-responsive element.

Involvement of Putative Heat Shock Element in Transcriptional Regulation of $p21^{WAF1/ClP1/SDl1}$ by Heat Shock

  • Woo, Sang-Hyeok;Oh, Su-Young;Han, Song-Iy;Choi, Yung-Hyun;Kang, Kwang-Il;Yoo, Mi-Ae;Kim, Han-Do;Kang, Ho-Sung
    • Animal cells and systems
    • /
    • v.4 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • The expression of $p21^{WAF1/ClP1/SDl1}$, one of the cyclin-dependent kinase inhibitors, is regulated by a variety of transcription factors including p53 and STAT. Heat shock induces the expression of p21 in a temperature- and time-dependent manner. Although the p21 induction by heat shock has been reported to be controlled by p53, a p53-independent mechanism Is also involved. To understand the p53-independent regulation of heat shock-induced p21 expression, we searched the promoter region of p21 gene and found one or two heat shock element (HSE)-like sequences in human, rat, and mouse. Electromobility shift assay (EMSA) showed that heat shock factor (HSF) could bind to these HSE-like sequences In response to heat shock, even though to a lesser extent than to HSE. In addition, p21 promoter deletion analysis revealed that heat shock activated a p21 deletion promoter construct containing the HSE-like sequences but lacking p53-binding sites, but not a promoter construct containing neither HSE-like sequences nor the p53-responsive element. Furthermore, the p21 induction by heat shook was significantly inhibited in confluent cells in which heat shock-induced HSF activation was reduced. These results suggest that the transcriptional regulation of p21 by heat shock may be mediated through activation and binding to HSE-like sequences of HSF.

  • PDF

Identification of Potential DREB2C Targets in Arabidopsis thaliana Plants Overexpressing DREB2C Using Proteomic Analysis

  • Lee, Kyunghee;Han, Ki Soo;Kwon, Young Sang;Lee, Jung Han;Kim, Sun Ho;Chung, Woo Sik;Kim, Yujung;Chun, Sung-Sik;Kim, Hee Kyu;Bae, Dong-Won
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.383-388
    • /
    • 2009
  • The dehydration responsive element binding protein 2C (DREB2C) is a dehydration responsive element/C-repeat (DRE/CRT)-motif binding transcription factor that induced by mild heat stress. Previous experiments established that overexpression of DREB2C cDNA driven by the cauliflower mosaic virus 35S promoter (35S:DREB2C) resulted in increased heat tolerance in Arabidopsis. We first analyzed the proteomic profiles in wild-type and 35S:DREB2C plants at a normal temperature ($22^{\circ}C$), but could not detect any differences between the proteomes of wild-type and 35S: DREB2C plants. The transcript level of DREB2C in 35S: DREB2C plants after treatment with mild heat stress was increased more than two times compared with expression in 35S:DREB2C plants under unstressed condition. A proteomic approach was used to decipher the molecular mechanisms underlying thermotolerance in 35S:DREB2C Arabidopsis plants. Eleven protein spots were identified as being differentially regulated in 35S:DREB2C plants. Moreover, in silico motif analysis showed that peptidyl-prolyl isomerase ROC4, glutathione transferase 8, pyridoxal biosynthesis protein PDX1, and elongation factor Tu contained one or more DRE/CRT motifs. To our knowledge, this study is the first to identify possible targets of DREB2C transcription factors at the protein level. The proteomic results were in agreement with transcriptional data.

An Experimental Study of Thermal Response of Sprinklers (스프링클러의 열응답성에 관한 실험적 연구)

  • 한용식;김명배
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.68-71
    • /
    • 1996
  • The thermal response of sprinkler is characterized by the response time index(RTI). The RTI represents the product of the thermal time constant for the heat responsive element of a sprinkler and the square root of the hot air velocity at plunge test. A plunge test is adapted for measuring RTI, wherein a sprinkler is suddenly immersed in the steady flow in the test section of a hot air tunnel. The method of measurements of the response parameters is presented.

  • PDF

Experimental Study on the Characteristics of Thermal Sensitivity for Fusible Alloy Type Sprinkler Head (가용합금형 스프링클러 헤드의 열감도 특성에 관한 실험적 연구)

  • 권오승;이진호
    • Fire Science and Engineering
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 1995
  • The sprinkler head is a component of the sprinkler system intended to discharge water for automatic detection and extinguishment of fires. On this study, thermal characteristic values affecting the sensitivity of the fusible alloy type sprinkler head were obtained and analyzed under heated air stream condition which had constant temperature and velocity. The experiment was carried out under the forced convection condition with both the conductive heat loss considered and neglected. The thermal characteristic values of the sprinkler head were obtained in accordance with the material and shape of the heat responsive element and the conditions of the main body.

  • PDF

OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis

  • Jin, Xiao-Fen;Xiong, Ai-Sheng;Peng, Ri-He;Liu, Jin-Ge;Gao, Feng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.43 no.1
    • /
    • pp.34-39
    • /
    • 2010
  • Expression patterns of OsAREB1 revealed that expression of OsAREB1 gene can be induced by ABA, PEG and heat. Yeast one-hybrid assay demonstrated it can bind to ABA-responsive element (ABRE), which was found in most stress-induced genes. Transgenic Arabidopsis over-expressing OsAREB1 had different responses to ABA and glucose compared to wild-type plants, which suggest OsAREB1 might have a crucial role in these two signaling pathways. Further analysis indicate that OsAREB1 have multiple functions in Arabidopsis. First, OsAREB1 transgenic plants had higher resistance to drought and heat, and OsAREB1 up-regulated the ABA/stress related gene such as RD29A and RD29B. Second, it delayed plant flowering time by down-regulating the expression of flowering-related genes, such as FT, SOC1, LFY and AP1. Due to the dates, OsAREB1 may function as a positive regulator in drought/heat stresses response, but a negative regulator in flowering time in Arabidopsis.

The Arabidopsis Phytocystatin AtCYS5 Enhances Seed Germination and Seedling Growth under Heat Stress Conditions

  • Song, Chieun;Kim, Taeyoon;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.577-586
    • /
    • 2017
  • Phytocystatins (PhyCYSs) are plant-specific proteinaceous inhibitors that are implicated in protein turnover and stress responses. Here, we characterized a PhyCYS from Arabidopsis thaliana, which was designated AtCYS5. RT-qPCR analysis showed that the expression of AtCYS5 in germinating seeds was induced by heat stress (HS) and exogenous abscisic acid (ABA) treatment. Analysis of the expression of the ${\beta}-glucuronidase$ reporter gene under the control of the AtCYS5 promoter showed that AtCYS5 expression during seed germination was induced by HS and ABA. Constitutive overexpression of AtCYS5 driven by the cauliflower mosaic virus 35S promoter led to enhanced HS tolerance in transgenic Arabidopsis, which was characterized by higher fresh weight and root length compared to wild-type (WT) and knockout (cys5) plants grown under HS conditions. The HS tolerance of AtCYS5-overexpressing transgenic plants was associated with increased insensitivity to exogenous ABA during both seed germination and post-germination compared to WT and cys5. Although no HS elements were identified in the 5'-flanking region of AtCYS5, canonical ABA-responsive elements (ABREs) were detected. AtCYS5 was upregulated in ABAtreated protoplasts transiently co-expressing this gene and genes encoding bZIP ABRE-binding factors (ABFs and AREB3). In the absence of ABA, ABF1 and ABF3 directly bound to the ABREs in the AtCYS5 promoter, which activated the transcription of this gene in the presence of ABA. These results suggest that an ABA-dependent pathway plays a positive role in the HS-responsive expression of AtCYS5 during seed germination and post-germination growth.

Analysis on the Effects of the Heat Loss Coefficient on the Operation Time of Sprinkler in Compartment Fire (구획 화재에서 스프링클러 열 손실계수 변화에 따른 작동 시간 분석)

  • You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.34-39
    • /
    • 2018
  • In this study, the experiment conditions for the variation of heat release rate in compartment space were constructed to analyze the effects of fire spread and the operation time of sprinkler in accordance with the heat loss of the sprinkler's heat element. The compartment composed of fire board (width = 0.3 m, height = 0.5 m, length = 3.0 m), are manufactured to measure the temperature distributions in the inner space, the mass loss rate and heat release rate during the experiment of N-heptane pool fire test. Also, the operation time of sprinkler is analyzed with the installation of sprinkler and C-factor using Fire Dynamics Simulator Ver.6 under the experiment conditions. The results show that the operation time of sprinkler, which has RTI $100(m{\cdot}s)^{0.5}$ operating temperature $70^{\circ}C$, is 30 s~60 s for C-factor = 0 and 1, 62 s~92 s for C-factor = 3, and 120 s over for C-factor = 5, respectively.

Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants

  • Baek, Dongwon;Chun, Hyun Jin;Yun, Dae-Jin;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.697-705
    • /
    • 2017
  • The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.

An Experimental Study on Development of a Window Sprinkler for Fire Spread Prevention along Building External Walls (건물 외벽 화재확산 방지용 윈도우 헤드의 개발을 위한 실험적 연구)

  • Kwark, Jihyun;Kim, Dong-Jun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • In case of fire in a high-rise building fire can be easily spread along the building external walls dramatically if the flame comes out through broken windows. There are a few effective methods to prevent the fire spread at the moment. One is using a fire resistance window, and the other is using a window sprinkler that discharges water to resist flame in case of fire. In this study a window sprinkler which is installed on top of windows and prevents fire by discharging water when its heat-responsive element opens was tested using a large scale furnace in accordance with the standard temperature-time graph. Test result showed that one window sprinkler was able to protect a 2,400 mm wide window from fire for 2 hours and the window backside's temperature locally increased up to $126^{\circ}C$ but kept stable around $100^{\circ}C$ for the test duration.