DOI QR코드

DOI QR Code

OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis

  • Jin, Xiao-Fen (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Xiong, Ai-Sheng (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Peng, Ri-He ;
  • Liu, Jin-Ge (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Gao, Feng (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences) ;
  • Chen, Jian-Min (College of Life Science and Technology, Yangzhou University) ;
  • Yao, Quan-Hong (Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences)
  • Published : 2010.01.31

Abstract

Expression patterns of OsAREB1 revealed that expression of OsAREB1 gene can be induced by ABA, PEG and heat. Yeast one-hybrid assay demonstrated it can bind to ABA-responsive element (ABRE), which was found in most stress-induced genes. Transgenic Arabidopsis over-expressing OsAREB1 had different responses to ABA and glucose compared to wild-type plants, which suggest OsAREB1 might have a crucial role in these two signaling pathways. Further analysis indicate that OsAREB1 have multiple functions in Arabidopsis. First, OsAREB1 transgenic plants had higher resistance to drought and heat, and OsAREB1 up-regulated the ABA/stress related gene such as RD29A and RD29B. Second, it delayed plant flowering time by down-regulating the expression of flowering-related genes, such as FT, SOC1, LFY and AP1. Due to the dates, OsAREB1 may function as a positive regulator in drought/heat stresses response, but a negative regulator in flowering time in Arabidopsis.

Keywords

References

  1. Hoth, S., Morgante, M., Sanchez, J. P., Hanafey, M. K.,Tingey, S. V. and Chua, N. H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell. Sci. 115, 4891-4900 https://doi.org/10.1242/jcs.00175
  2. Kazuko, Y. S. and Kazuo, S. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781- 803 https://doi.org/10.1146/annurev.arplant.57.032905.105444
  3. Liu, J. G., Qin, Q. L., Zhang, Z., Peng, R. H., Xiong, A. S.,Chen, J. M. and Yao, Q. H. (2009) OsHSF7 gene in rice,Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor. BMB Reports 42, 16-21 https://doi.org/10.5483/BMBRep.2009.42.1.016
  4. Uno, Y. C., Furihata, T., Abe, H., Riichiro, Y., Kazuo S. and Kazuko Y. S. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and highsalinity conditions. Proc. Natl Acad. Sci. 97, 11632-11637 https://doi.org/10.1073/pnas.190309197
  5. Wei, G., Pan, Y., Lei, J. and Zhu, Y.X. (2005) Molecular Cloning, Phylogenetic Analysis, Expressional Profiling and In Vitro Studies of TINY2 from Arabidopsis thaliana. BMB Reports 38, 440-446 https://doi.org/10.5483/BMBRep.2005.38.4.440
  6. Youko, O., Motoaki, S., Tokihiko, N., Mari, N., Miki, F.,Rie, S., Masakazu, S., Tetsuya, S., Junko,I., Kenji, A., Kei,I., Kyonoshin, M., Shinobu, S., Kazuko Y. S. and Kazuo, S.(2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34, 868-887 https://doi.org/10.1046/j.1365-313X.2003.01774.x
  7. Busk, P. K. and Pag\acute{e}s, M. (1998) Regulation of abscisic acid-induced transcription. Plant Mol. Biol. 37, 425-435 https://doi.org/10.1023/A:1006058700720
  8. Choi, H. I., Hong, J. H., Ha, J. O., Kang, J. Y. and Kim, S. Y. (2000) ABFs, a family of ABA-responsive element bind ing factors. J. Biol. Chem. 275, 1723-1730 https://doi.org/10.1074/jbc.275.3.1723
  9. Kang, J. Y., Choi, H. I., Im, M. Y. and Kim, S. Y. (2002)Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357 https://doi.org/10.1105/tpc.010362
  10. Brocard, I. M., Lynch, T. J. and Finkelstein, R. R. (2002)Regulation and role of the Arabidopsis abscisic acid-insensitive 5 Gene in abscisic acid, sugar, and stress response. Plant Physiol. 129, 1533-1543 https://doi.org/10.1104/pp.005793
  11. Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T. and Parcy, F. (2002)bZIP transcription factors in Arabidopsis. Trends in Plant Science 7, 106-111 https://doi.org/10.1016/S1360-1385(01)02223-3
  12. Kim, S., Kang, J. Y., Cho, D. I., Park, J. H. and Kim, S. Y.(2004) ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 40, 75-87 https://doi.org/10.1111/j.1365-313X.2004.02192.x
  13. Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Masaru, O. T., Kazuo, S. and Kazuko, Y. S. (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488 https://doi.org/10.1105/tpc.105.035659
  14. Nijhawan, A., Jain, M., Tyagi, A. K. and Khurana, J. P. (2008) A genomic survey and gene expression analysis of basic leucine zipper (bZIP) transcription factor family in rice. Plant Physiol. 146, 333-350 https://doi.org/10.1104/pp.107.112821
  15. Zou, M. J., Guan, Y. C., Ren, H. B., Zhang, F. and Chen, F. (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol. 66, 675-683 https://doi.org/10.1007/s11103-008-9298-4
  16. Xiang, Y., Tang, N., Du, H., Ye, H. Y. and Xiong, L. Z. (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148, 1938-1952 https://doi.org/10.1104/pp.108.128199
  17. Lu, G. J., Gao, C. X., Zheng, X. N. and Han, B. (2009)Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229, 605-615 https://doi.org/10.1007/s00425-008-0857-3
  18. Hobo, T., Kowyama, Y. and Hattori, T. (1999) A bZIP factor,TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proc. Natl. Acad. Sci. 96, 15348-15353 https://doi.org/10.1073/pnas.96.26.15348
  19. Kagaya, Y., Hobo, T., Murata, M., Ban, A. and Hattori, T. (2002) Abscisic acid?induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell 4, 3177-3189
  20. Zou, M. J., Guan, Y. C., Ren, H. B., Zhang, F. and Chen,F. (2007) Characterization of alternative splicing products of bZIP transcription factors OsABI5. Biochemical and Biophysical Research Communications 24, 307-313
  21. Gazzarrini, S. and McCourt, P. (2001) Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr. Opin. Plant Biol. 4, 387-391 https://doi.org/10.1016/S1369-5266(00)00190-4
  22. Leon, P. and Sheen, J. (2003) Sugar and hormone connections. Trends in Plant Science 8, 110-116 https://doi.org/10.1016/S1360-1385(03)00011-6
  23. Li, Y. H., Lee, K. K., Walsh, S., Smith, K., Hadingham, S.,Sorefan, K., Cawley, G. and Bevan, M. V. (2006)Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res. 16, 414-427 https://doi.org/10.1101/gr.4237406
  24. Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M.,Koshiba, T. and Sheen, J. (2002) A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. Plant Cell 14, 2723-2743 https://doi.org/10.1105/tpc.006494
  25. Price, J., Li, T. C., Kang, S. G., Na, J. K. and Jang, J. C.(2003) Mechanisms of Glucose Signaling during Germination of Arabidopsis. Plant Physiol. 132, 1424-1438 https://doi.org/10.1104/pp.103.020347
  26. Kazuko, Y. S. and Kazuo, S. (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, lowtemperature, or high-salt stress. Plant Cell 6, 251-264 https://doi.org/10.1105/tpc.6.2.251
  27. Takashi, F., Kyonoshin, M., Yasunari, F., Taishi, U., Riichiro, Y., Kazuo, S. and Kazuko, Y. S. (2006) ABA-dependen multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl. Acad. Sci. 103, 1988-1993 https://doi.org/10.1073/pnas.0505667103
  28. Hepworth, S. R., Valverde, F., Ravenscroft, D., Mouradov, A. and Coupland, G. (2002) Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21, 4327-4337 https://doi.org/10.1093/emboj/cdf432
  29. Igor, K., Vipula, K. S., Ji, H. A., Nicole, Dagenais., Sioux, K. C., Jasmine T. N., Joanne, C., Maria, J. H. and Detlef, W. (1999) Activation tagging of the floral inducer FT. Science 286, 1962-1965 https://doi.org/10.1126/science.286.5446.1962
  30. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M. and Araki, T. (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962 https://doi.org/10.1126/science.286.5446.1960
  31. Bla' zquez, M.A., Soowal, L. N., Lee, I. and Weigel, D.(1997). LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-3844
  32. Wagner, D., Sablowski, R. W. M. and Eyerowitz, E. M.(1999) Transcriptional activation of APETALA1 by LEAFY. Science 285, 582-584 https://doi.org/10.1126/science.285.5427.582
  33. Mandel, A. M. and Yanofsky, M. F. (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522-524 https://doi.org/10.1038/377522a0
  34. Schütze, K., Harter, K. and Chaban, C. (2008) Post-translational regulation of plant bZIP factors. Trends in Plant Science 13, 47-255
  35. Liu, J. G., Zhang, Z., Qin, Q. L., Peng, R. H., Xiong, A. S.,Chen, J. M., Xu, F., Zhu, H. and Yao, Q. H. (2007)Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biotechnol. Lett. 29, 165-173
  36. Zhang, X., Henriques, R. and Lin, S. S. (2006) Agrobacteriummediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641-646 https://doi.org/10.1038/nprot.2006.97

Cited by

  1. Progress studies of drought-responsive genes in rice vol.30, pp.3, 2011, https://doi.org/10.1007/s00299-010-0956-z
  2. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions vol.7, 2016, https://doi.org/10.3389/fpls.2016.01029
  3. Sub-Functionalization in Rice Gene Families with Regulatory Roles in Abiotic Stress Responses vol.35, pp.4, 2016, https://doi.org/10.1080/07352689.2016.1265357
  4. Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis vol.39, pp.2, 2012, https://doi.org/10.5010/JPB.2012.39.2.106
  5. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants vol.147, pp.1, 2013, https://doi.org/10.1111/j.1399-3054.2012.01635.x
  6. Arg156 in the AP2-Domain Exhibits the Highest Binding Activity among the 20 Individuals to the GCC Box in BnaERF-B3-hy15, a Mutant ERF Transcription Factor from Brassica napus vol.7, 2016, https://doi.org/10.3389/fpls.2016.01603
  7. EcbZIP60, a basic leucine zipper transcription factor from Eleusine coracana L. improves abiotic stress tolerance in tobacco by activating unfolded protein response pathway vol.35, pp.9, 2015, https://doi.org/10.1007/s11032-015-0374-6
  8. Trait Specific Expression Profiling of Salt Stress Responsive Genes in Diverse Rice Genotypes as Determined by Modified Significance Analysis of Microarrays vol.7, 2016, https://doi.org/10.3389/fpls.2016.00567
  9. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.) vol.16, pp.9, 2015, https://doi.org/10.3390/ijms160920657
  10. Drought-responsive genes expressed predominantly in root tissues are enriched with homotypic cis -regulatory clusters in promoters of major cereal crops vol.5, pp.3, 2017, https://doi.org/10.1016/j.cj.2016.10.001
  11. Proteomics of rice in response to heat stress and advances in genetic engineering for heat tolerance in rice vol.30, pp.12, 2011, https://doi.org/10.1007/s00299-011-1122-y
  12. Wheat and rye genome confer specific phytohormone profile features and interplay under water stress in two phenotypes of triticale vol.118, 2017, https://doi.org/10.1016/j.plaphy.2017.07.016
  13. Signaling Components of ABA-dependent Transcriptional Regulation vol.46, pp.1, 2014, https://doi.org/10.9787/KJBS.2014.46.1.001