• Title/Summary/Keyword: Heat-Wave

Search Result 741, Processing Time 0.027 seconds

Fast Defect Detection of PCB using Ultrasound Thermography (초음파 서모그라피를 이용한 빠른 PCB 결함 검출)

  • Cho, Jai-Wan;Jung, Hyun-Kyu;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.273-275
    • /
    • 2005
  • Active thermography is being used since several years for remote non-destructive testing. It provides thermal images for remote detection and imaging of damages. Also, it is based on propagation and reflection of thermal waves which are launched from the surface into the inspected component by absorption of modulated radiation. For energy deposition, it use external heat sources (e.g., halogen lamp or convective heating) or internal heat generation (e.g., microwaves, eddy current, or elastic wave). Among the external heat sources, the ultrasound is generally used for energy deposition because of defect selective heating up. The heat source generating a thermal wave is provided by the defect itself due to the attenuation of amplitude modulated ultrasound. A defect causes locally enhanced losses and consequently selective heating up. Therefore amplitude modulation of the injected ultrasonic wave turns a defect into a thermal wave transmitter whose signal is detected at the surface by thermal infrared camera. This way ultrasound thermography(UT) allows for selective defect detection which enhances the probability of defect detection in the presence of complicated intact structures. In this paper the applicability of UT for fast defect detection is described. Examples are presented showing the detection of defects in PCB material. Measurements were performed on various kinds of typical defects in PCB materials (both Cu metal and non-metal epoxy). The obtained thermal image reveals area of defect in row of thick epoxy material and PCB.

  • PDF

Water utilities vulnerability assessment and adaption strategies for climate change in Jeju province (제주도 기후변화 관련 상수도시설 취약성 평가 및 적응대책)

  • Kim, Jinkeun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.517-526
    • /
    • 2018
  • Climate adaptation strategies for water utilities including 16 water treatment plants(WTPs) in Jeju were investigated. Drought, heat wave, and heavy rain were among the most significant climate factors affecting water utilities in Jeju. Heat wave increases water temperature, which in turn increases the concentration of algae, color, and odor materials. Some adaption strategies for the heat wave can be strengthening water monitoring and introducing advanced water treatments. Heavy rain increases raw water turbidity in surface water. The 7 WTPs that take raw water from streams or springs had a maximum turbidity of less than 50 NTU under heavy rain. However, due to concerns of turbidity spike in treated water, some WTPs discontinued intaking raw water when raw water turbidity increased more than 2 NTU. They instead received treated water from other WTPs which took groundwater for water supply. This happens because of the low skills of employees. Thus, there needs to be an increase in operator competency and upgrade of water facilities for the adaption of heavy rain. To improve adaption for the drought, there should be an increase in the capacity of intake facilities of surface water as well as a decrease in water loss. In addition, water consumption per person should be decreased.

Development of Clinical Protocol for Acquisition of Change of Radial Pulse Wave Signal in the Cold-Heat Intervention: Explanatory, Randomized, 2×2 cross-over design (냉온 부하에 따른 요골동맥 맥파의 변화 특성을 파악하기 위한 무작위 배정·2×2교차설계 탐색적 임상시험계획서 개발)

  • Yu, Hana;Kim, Jihye;Ku, Boncho;Kim, Hyunho;Jeon, Youngju
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.19 no.2
    • /
    • pp.91-100
    • /
    • 2015
  • Objectives The aim of this study is to develop a structured clinical protocol related with acquisition of radial pulse wave in the randomized, $2{\times}2$ cross-over design, and cold-heat intervention trial for a pilot and preliminary study. Methods The protocol was contrived based on wide ranging literature searches for cold-heat intervention experiments and radial pulse diagnoses. Results Sample size of 60 subjects was calculated based on an effect size derived from the previous study designed to detect the pre-post cold-heat differences in the radial pulse. Each subjects will be randomly assigned to the cold (first) to heat (last) group (n=30) or heat (first) to cold (last) group (n=30). All subjects will fill out a case report form and questionnaires related with pattern identification, dietary patterns, sleep quality, and physical activity will be surveyed and used as a secondary outcomes. Safety assessment will be reported at the final stage. Conclusions This protocol will provide an additional reference to future studies related with observation of radial pulse during any interventions and also expect to be used as a guideline for acquisition of reliable radial pulse wave data.

An Experimental Study on Comparing Solar Heat Shading Performances in Accordance with the Type of Internal Blinds in the Summer (하절기 내측 블라인드의 유형별 일사차폐성능 비교 실측연구)

  • Park, Eun-Mi;Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.4
    • /
    • pp.1-9
    • /
    • 2016
  • The purpose of this study was to compare heat shading performance of various blind types in summer. 4 types of blinds were employed and the results are summarized as follows: 1) There were significant differences in indoor thermal environment and heat shading performance between different heat shading devices, and functional blinds demonstrated relatively superior heat shading performance. 2) Indoor long wave radiation influx measures were lowest for the coating roll blind (Blind B), followed by the coating venetian blind (Blind C), the venetian blind (Blind A), the roll blind, and not having any blinds at all. 3) Such examination results carry implications to reduce cooling load and enhance the indoor environment.

Analysis of Relationship between the Spatial Characteristics of the Elderly Population Distribution and Heat Wave based on GIS - focused on Changwon City - (GIS 기반 노인인구 분포지역의 공간적 특성과 폭염의 관계 분석 - 창원시를 대상으로 -)

  • SONG, Bong-Geun;PARK, Kyung-Hun;KIM, Gyeong-Ah;KIM, Seoung-Hyeon;Park, Geon-Ung;MUN, Han-Sol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.68-84
    • /
    • 2020
  • This study analyzed the relationship between spatial characteristics and heat waves in the distribution area of the elderly population in Changwon, Gyeongsangnam-do. For analysis, the Statistics Census data, the Ministry of Environment land cover, Landsat 8 surface temperature, and the Meteorological Agency's heat wave days data were used. The spatial characteristics of the distribution of the elderly population was classified into 5 types through K-mean cluster analysis considering the land use types. The characteristics of the elderly population by spatial type were higher in the urbanized type(cluster-3), but the proportion of the elderly population was higher in the agricultural and forest area types(cluster-1, cluster-2). In the characteristics of the surface temperature and the heat wave days, the surface temperature was the highest in the urban area, but heat wave days were the highest in the rural area. As a result of analyzing the heat wave characteristics according to the spatial type of the distribution area of elderly population, cluster-2 with the largest area in agricultural areas was highest at 15.95 days, and cluster-3 with a large area in urbanized types was the lowest at 9.41 days and 9.18 days. In other words, the elderly population living in rural areas is more exposed to heat waves than the elderly population living in urban areas, and the damage is expected to increase. The results of this study could be used as basic data to prepare various policy measures for effective management and prevention of vulnerable areas in summer.

COMPARISON OF APICAL SEALING EFFICACIES USING DIFFERENT PLUGGING DEPTH IN CONTINUOUS WAVE OF OBTURATION TECHNIQUE (Continuous wave of obturation technique에서 플러거의 다양한 적용 깊이에 따른 근단부 폐쇄효율 비교)

  • Lee, Sang-Jin;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.6
    • /
    • pp.491-497
    • /
    • 2007
  • The purpose of this study was to compare apical sealing ability of continuous wave canal filling technique according to various heat source plugging depths. Eighty one extracted human premolars with straight root were cleaned and shaped to size 35 using .06 taper rotary NiTi file. After cleansing and shaping, the teeth were divided into 5 groups following the heat source probing depths from the apex; 3, 4, 5, 6 and 7 mm. All specimens were filled using E&Q plus with #35/.06 tapered gutta-percha cone. The positive control teeth were not filled. All teeth were coated with nail varnish except the apical 1 mm around the apical foramen. Negative control teeth were completely sealed include the apical foramen. All specimens were immersed in 1% methylene blue solution for 72 hours. Then the specimens were sectioned horizontally at 1, 2 and 3 mm from the root apex. Each sectioned surface was photographed using a digital camera attached to the stereomicroscope at $12.5{\times}2.5$ fold magnification. All points at 1, 2 and 3 mm were summed as final score of one specimen. Statistical analysis of the collected data was performed. Under the condition of this study. there was no significant difference between the heat source plugging depths of 3, 4, 5, 6 and 7 mm in apical sealing ability. All of apical heat source plugging depth from 3 to 7 mm including Buchanan's protocol -from 5 to 7 mm- seems to be acceptable in clinical application.

Study on the Characteristics of Spatial Relationship between Heat Concentration and Heat-deepening Factors Using MODIS Based Heat Distribution Map (MODIS 기반의 열 분포도를 활용한 열 집중지역과 폭염 심화요인 간의 공간관계 특성 연구)

  • Kim, Boeun;Lee, Mihee;Lee, Dalgeun;Kim, Jinyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_4
    • /
    • pp.1153-1166
    • /
    • 2020
  • The purpose of this study was to analyze the spatial correlation between the heat distribution map of the satellite imaging base and the factors that deepen the heat wave, and to explore the heat concentration area and the space where the risk of future heat wave may increase. The global Moran's I of population, land use, and buildings, which are the causes of heat concentration and heat wave deepening, is found to be high and concentrated in specific spaces. According to the analysis results of local Moran's I, heat concentration areas appeared mainly in large cities such as metropolitan and metropolitan areas, and forests were dominant in areas with relatively low temperatures. Areas with high population growth rates were distributed in the surrounding areas of Gyeonggi-do, Daejeon, and Busan, and the use of land and buildings were concentrated in the metropolitan area and large cities. Analysis by Bivarate Local Moran's I has shown that population growth is high in heat-intensive areas, and that artificial and urban building environments and land use take place. The results of this research can lead to the ranking of heat concentration areas and explore areas with environments where heat concentration is concentrated nationwide and deepens it, so ultimately it is considered to contribute to the establishment of preemptive measures to deal with extreme heat.

The Study on Pressure Oscillation and Heat Transfer Characteristics of Oscillating Capillary Tube Heat Pipe Using Mixed Working Fluid (혼합 작동 유체를 이용한 진동 세관형 히트 파이프의 압력 진동과 열전달 특성에 관한 연구)

  • Jeong, Hyeon-Seok;Kim, Jeong-Hun;Kim, Ju-Won;Kim, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.318-327
    • /
    • 2002
  • In this paper, heat transfer and pressure oscillation characteristics on oscillating capillary tube heat pipe(OCHP) according to input heat flux, mixture ratio of working fluid and inclination angle were investigated and were compared single working fluid(R-142b) with binary mixture working fluid(R-142b-Ethano1). OCHP was made to serpentine structure of loop type with 10 turns by drilling the channels of length 220mm, width 1.5mm, and depth 1.5mm on the surface of brass plate. In this study, R-l42b and R-l42b-Ethanol were used as working fluids, the charging ratio of working fluids was 40(vol.%), the input heat flux to evaporating section was changed from 0.3W/㎠ to 1.8W/㎠, and mixture ratio of working fluid was R(100%), R(95%)-E(5%), R(90%)-E(10%), and R(85%)-E(15%). From the experimental results, it was found that the effective thermal conductivity of single working fluid was better than that of binary mixture working fluid. But, in case of binary mixture working fluid, critical heat flux was higher than that of single working fluid. And, the higher the mixture ratios of working fluid, the lower heat transfer performance. In case of pressure oscillation, as the inclination angle was lower, pressure wave was more irregular. These phenomena were more serious when the working fluid was binary mixture. Besides, when mixture ratio was higher, saturated pressure was increased, more irregular wave was observed and the mean amplitude was increased. For the same input heat flux, inclination angle and charging ratio, when pressure oscillation has sinusoidal wave, mean amplitude was small, and saturated pressure was low value, the heat transfer was excellent.

A Study on the Wave Formation and Hair Damage Levels Relating to the Uses of Treatments for Heat Permanent Waves

  • Kim, Kwan-Ok;Kim, Sung-Nam
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.1-10
    • /
    • 2008
  • Public interest in healthy hairs gets growing as damaged hairs are seen more frequently with the generalization of heat permanent waves. For this study, experiments have been conducted to understand the influences on the changes in physical and morphological features of wave forms and damaged hairs, by collecting virgin hairs from the women in their mid-20's, who had not experienced chemical applications, and by dividing the applications of heat perm hair treatments, PPT(for pre-treatment) and LPP(for post-treatment), into the pre-treatment, the post-treatment, the pre & post-treatment, and the non-treatment. For the wave formations, curl waves were investigated by the bare eyes using the pictures taken by a digital camera. For the comparison of physical features, the experiments of tensile strength and elongation were done and their mean values were found. For the observations of morphological features, the pictures were taken by SEM for comparison. As for the findings, regarding the curl wave shapes of hairs, the most even and elastic S curl was formed in the case of non-treatment. In the physical features, both of the tensile strength and elongation showed a decreasing tendency in line with the hair damage levels, and the case of the pre & post-treatment indicated the tendency most similar to the control group. In the morphological features of the cuticle, observed with an SEM, the pre-treatment showed the higher possibility of reducing the cuticle damages than the post-treatment did. LPP was found to play the role of protective membrane for the post-treatment, and the pre & post-treatment turned out to reduce most effectively the cuticle damages.

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.