• Title/Summary/Keyword: Heat transformer

Search Result 121, Processing Time 0.032 seconds

Simulated winding temperature distribution of HTS transformer cooled by sub-cooled liquid nitrogen

  • Han, J.H.;Choi, K.D.;Kim, T.Y.;Chang, T.;Kim, W.S.;Kim, S.H.;Hahn, S.Y.;Kim, S.R.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.51-54
    • /
    • 2004
  • A 1 MV A single phase high temperature superconducting (HTS) transformer was manufactured. In order to reduce AC loss generated in the HTS winding, winding was concentrically arranged. Operation temperature is set at 65K to increase the critical current and reduce the amount of HTS tape usage and the volume. The cryogenic system which consists of main cryostat with the windings and secondary cryostat with 2 GM coolers and cryopump on top and heat exchanger inside is also designed and the cooling performance is simulated with Fluent. Temperature distribution of the windings is investigated whether the windings are kept under designed operation temperature.

Design of Copper Sheets to Subcool Liquid Nitrogen in HTS Transformer (HTS변압기의 액체질소 과냉을 위한 구리판의 설계)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.291-294
    • /
    • 2003
  • In our newly proposed cryogenic systems for HTS transformer, liquid nitrogen is subcooled by copper sheets extended from coldhead of cryocooler. Since the shape of copper sheets has been given by the shape of HTS windings and electrical restriction, the thickness of copper sheets is the main parameter to determine operating temperature in HTS windings. Temperature distributions between windings and coldhead are investigated by heat transfer analysis, from which the thickness of copper sheets to maintain every part of windings below 66 K is calculated. The effects of the amount of AC loss on the temperature distributions in cooling system are also presented.

  • PDF

A Study on the Deteriorated Cause Analysis of Mold Type Potential Transformer (몰드형 계기용 변압기의 소손원인 해석에 관한 연구)

  • Choi, Chung-Seog;Kim, Hyug-Soo;Shong, Kil-Mok;Kim, Hyung-Rae;Lee, Duck-Chool
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1557-1559
    • /
    • 2000
  • In this paper, we intend to establish the judgement of electrical fire through analysis of PT(Potential Transformer) using the power installation. The columnar structure and the void generated by abrupt heat grew at the tenter of boundary-face on the metallurgical microscope analysis. The detection of OK lines was confirmed by EDX(Energy Dispersive X-ray spectroscopy) as melting and recombination due to the layer-short of the wiring. We found that the thermal-weight decrease occurred at 300$^{\circ}C$ in case of being the thermal-deterioration on the base of the result that analyzed the insulated-materials by using TGA, and the thermal reaction limited-value of PT insulator was about 300$^{\circ}C$ on the DSC curve. As this analysis, we confirmed what the layer-short appeared in the wiring of PT.

  • PDF

Natural Convection Heat Transfer from a Heated Fine Wire in Nanofluids (나노유체에 잠긴 가는 열선 주위의 자연대류 열전달)

  • Lee, Shin-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.807-813
    • /
    • 2007
  • Recent research on nanofluids under forced convection experiment shows that there is little relationship between convective heat transfer and thermal conductivity increase of nanofluids. This kind of new findings are totally different from the traditional theory of nanofluids, which says that the higher thermal conductivity is a prerequisite for convective heat transfer enhancement. To elucidate this controversial issue in a very comprehensible manner, simple natural convection experiment has been carried out for the water- and oil-based nanofluids. ($water-Al_2O_3$, transformer $oil-Al_2O_3$) Present research shows that there exists strong dependence between natural convection performance and thermal conductivity increase of nanofluids.

Measuring Thermal Conductivity of Nanofluids and Heat Transfer Enhancement (나노유체의 열전도율 측정과 열전달 향상)

  • Lee, Shin-Pyo;Choi, Cheol;Oh, Je-Myung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.147-150
    • /
    • 2006
  • A new class of heat transfer fluid with higher thermal conductivity, called nanofluids has been developed by Dr. S. Choi about decade ago. Many exciting experimental and theoretical results have been reported worldwide to predict the thermal conductivity enhancement of nanofluids, however, they sometimes show excessive large discrepancies between each other. This kind of disagreements in thermal conductivity data is partly ascribable to the accuracy of the measuring apparatus, that is, mostly used THM(transient hot-wire method). New thermal conductivity measuring method whose principle is different from that of conventional THM is proposed in this article and measurements and uncertainty analysis were made for the three nanofluid samples with different particle concentration of pure, 2% and 4% of AlN nanofluids.

  • PDF

Thermodynamic Analysis of an Absorption Heat Pump System with New Working Pairs[I] (1, 2종 흡수식 히트펌프의 작동 매체에 따른 성능 해석[I])

  • Won, S.H.;Lee, W.Y.;Chung, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.219-227
    • /
    • 1989
  • Performance analysis of an absorption heat pump system for solar energy recovery has been done by computer simulation to find improved working pairs. Based on the thermodynamic analysis, the coefficient of performance and mass flow ratio have been calculated to compare two aqueous solutions [LiCl-water, $LiCi-CaCl_2-Zn(NO_3)_2$-water] which were developed for cooling by others, with the conventional LiBr-water solution. As a result of this analysis, the performances of the new aqueous solutions were found to be better than that of LiBr-water solution not only in cooling systems, but also in heating and in heat transformer systems. Their theoretical thermodynamic performance data were given here with.

  • PDF

Performance Characteristics of Type II LiBr-H2O Absorption Heat Pump in Accordance with the Refrigerant Heat Exchanger Configuration (냉매 열교환기 구성방법에 따른 제 2종 흡수식 히트펌프의 성능 특성 변화에 관한 연구)

  • Lee, Chang Hyun;Yoon, Jun Seong;Kim, In Gwan;Kwon, Oh Kyung;Cha, Dong An;Bae, Kyung Jin;Kim, Min Su;Park, Chan Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.7
    • /
    • pp.373-384
    • /
    • 2017
  • The objective of this study was to determine the effect of refrigerant heat exchanger on the performance of type II absorption heat pump performance using numerical analysis. Two heat exchange installation methods were used: solution to refrigerant and waste hot water to refrigerant. These methods were compared to the standard model of hot water flow without using refrigerant heat exchanger. When waste hot waters were bypassed to refrigerant heat exchanger, COP was not affected. However, steam mass generation rates were increased compared to those of the standard model. When solutions were bypassed to the refrigerant heat exchanger, results were different depending on the place where the solution rejoined. COP and steam mass generation rates were lower compared to those when waste heat water was passed to refrigerant heat exchanger. Thus, it is possible to obtain higher steam mass generation rates by using waste water and installing refrigerant heat exchanger.

Thermal Durability of Neon Transformer with Diluent Mixing Ratio (증량제 혼합비율에 따른 네온변압기의 열내구성 평가)

  • Hong, In Kwon;Jeon, Gil Song;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.452-457
    • /
    • 2015
  • The physical properties, such as the heat resistance and thermal durability of the temperature difference fatigue resistance should be excellent when preparing an epoxy type resin for a neon transformer housing. In this study, 50 wt% of $SiO_2$ and silica were selected as a reinforcement and diluent filler for epoxy type resins, respectively. Thermal conductivity and thermal stability were measured as the mixing ratio varied upon the particle sizes. The optimal amount of the mixed silica was 50 wt%. Thermal stability was improved with increasing the amount of larger silica particles. The optimal mixing ratio of differently sized silica particles was 28/3 : 14/18 : 8/10 mesh = 1 : 1 : 1. From these results, it is thought that neon transformer is producible which has excellent thermal durability.

Comparison the quantification method of PCBs in waste transformer oils (절연유 중 폴리염화비페닐류의 정량법 비교)

  • Kim, Kyeo-Keun
    • Analytical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.206-215
    • /
    • 2005
  • Polychlorinated biphenyls (PCBs) were commercially produced as complex mixtures beginning in 1929. The PCBs manufactured commercially are known by a variety of trade names including; Aroclor (USA), Phenoclor (France), Kaneclor (Japan), Sovol (USSR) and so on. PCBs are a class of 209 congeners that were widely used in a wide variety of applications, including dielectric fluid in transformers and large capacitors; heat transfer fluids; hydraulic fluids; lubricating and cutting oils; and as additives in pesticides, paints, adhesives, sealants, and plastics. The quantification methods of peak matching and coefficient comparison were compared using the Aroclor 1242, 1248, 1254, 1260 standards. Also, six transformer oils were analyzed as a main source of polychlorinated biphenyls (PCBs) emission into the environment. The transformer oils contained the pure and mixed of Aroclor 1242, Aroclor 1254, and Aroclor 1260. The analytical results using two quantification methods showed the little difference between the measured results.

A Study on Reductive Furnace for Copper Annealing Using Catalytic Combustion (촉매연소를 이용한 동 열처리용 환원로에 관한 연구)

  • Jeong, Nam-Jo;Kang, Sung-Kyu;Song, Kwang-Sup;Cho, Sung-June;Yu, Sang-Phil;Ryou, In-Su
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.83-89
    • /
    • 2001
  • Most technologies of reduction process used in the heat treatment of existent metal products are related to metals applied to bolts and parts of automobiles, and nonmetal such as copper. Heating conditions and reduction gases produced in above processes depend on types of products to be treated thermally but heating systems employ electricity commonly and the reduction gases are separated into additional production equipment and a gas dryer and inefficiently provided into the system. Electrical heating system has the advantage of convenient temperature-control but is not economical because of disadvantages of high electricity-running cost and extra installation cost of a transformer. Accordingly, development of the system which has economical heating mode in which provision of reduction gas and heating conditions are unified is necessary for improvement of economy and efficiency in current reduction processes. This study aimed to develop a new advanced heat treatment furnace using catalytic combustion. thereby minimizing the cost during heating, supplying heat and reductive gas at the same time and controlling operating condition freely by changing electrical heating system to heating system by the gas combustion and regeneration of wasted heat.

  • PDF