DOI QR코드

DOI QR Code

Natural Convection Heat Transfer from a Heated Fine Wire in Nanofluids

나노유체에 잠긴 가는 열선 주위의 자연대류 열전달

  • 이신표 (경기대학교 기계공학과)
  • Published : 2007.09.01

Abstract

Recent research on nanofluids under forced convection experiment shows that there is little relationship between convective heat transfer and thermal conductivity increase of nanofluids. This kind of new findings are totally different from the traditional theory of nanofluids, which says that the higher thermal conductivity is a prerequisite for convective heat transfer enhancement. To elucidate this controversial issue in a very comprehensible manner, simple natural convection experiment has been carried out for the water- and oil-based nanofluids. ($water-Al_2O_3$, transformer $oil-Al_2O_3$) Present research shows that there exists strong dependence between natural convection performance and thermal conductivity increase of nanofluids.

Keywords

References

  1. Choi, U. S., 1995, 'Enhancing Thermal Conductivity of Fluids with Nanoparticles,' ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, Nov., 12-17
  2. Kim, S. H., Choi, S. Hong, J. and Kim, D. S., 2005, 'Measurement of the Thermal Conductivity of Alumina/Zinc-Oxide/Titanium-Oxide Nanofluids,' Journal of KSME B, Vol. 29, No. 9, pp. 1065-1073 https://doi.org/10.3795/KSME-B.2005.29.9.1065
  3. Jang, S. P. and Choi, U. S., 2004, 'Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Applied Physics Letters, Vol. 84, Issue 21, pp. 4316-4318 https://doi.org/10.1063/1.1756684
  4. Lee, D. and Kim, J., 2006, 'A New Mechanism for Enhanced Heat Transport of Nanofluid,' Journal of KSME B, Vol. 30, No. 6, pp. 560-567 https://doi.org/10.3795/KSME-B.2006.30.6.560
  5. Keblinski, P., Phillpot, S. R., Choi, S. U. and Eastman, J. A., 2002, 'Mechanisms of Heat Flow in Suspensions of Nano-sized Particles(Nanofluids),' International Journal of Heat and Mass Transfer, Vol. 45, pp. 855-863 https://doi.org/10.1016/S0017-9310(01)00175-2
  6. Lee, S., Choi, U. S., Li, S., and Eastman, J. A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' ASME Tran. J. Heat Transfer, Vol. 121, pp. 280~289 https://doi.org/10.1115/1.2825978
  7. Das, K. D., Putra, N., Thiesen, P. and Roetzel, W., 2003, 'Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,' ASME Tran. J. Heat Transfer, Vol. 125, pp. 567-574 https://doi.org/10.1115/1.1571080
  8. Hwang, K. S., Lee, J., Lee, B. H. and Jang, S. P., 2007, 'Fluid Flow and Convective Heat Transfer Characteristics of $Al_2O_3$ Nanofluids,' Journal of KSME B, Vol. 31, No. 1, pp. 16-20 https://doi.org/10.3795/KSME-B.2007.31.1.016
  9. Lee, J. and Jang, S. P., 2006, 'Fluid flow Characteristics of $Al_2O_3$ Nanoparticles Suspended in Water,' Journal of KSME B, Vol. 30, No. 6, pp. 546-552 https://doi.org/10.3795/KSME-B.2006.30.6.546
  10. Holman, J. P., 1981, Heat Transfer, 5th Ed., McGraw Hill, pp. 289-290
  11. Lee, S., 2006, 'Measuring Thermal Conductivity of Nanofluids by Steady State Method,' Journal of KSME B, Vol. 30, No. 9, pp. 898-904 https://doi.org/10.3795/KSME-B.2006.30.9.898
  12. Incropera, F. P. and DeWitt, D. P., 2001, Introduction to heat transfer, 4th Ed., Wiley
  13. Carslaw, H. S. Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd Ed., Oxford University Press
  14. Johns, A. I., Scott, A. C., Watson, J. T. R. and Ferguson, D., 1988, 'Measurement of the Thermal Conductivity of Gases by the Transient Hot-wire Method,' Phil. Trans. R. Soc. Lond. Vol. A 325, pp. 295-356 https://doi.org/10.1098/rsta.1988.0054
  15. Lee, S., 2007, 'Validation Test for Transient Hot-wire Method to Evaluate the Temperature Dependence of Nanofluids,' Journal of KSME B, Vol. 31, No. 4, pp. 341-348 https://doi.org/10.3795/KSME-B.2007.31.4.341