• Title/Summary/Keyword: Heat room

Search Result 1,161, Processing Time 0.033 seconds

Analysis of Changed Bio-Signal to Radiation Exposure of Nuclear Medicine Worker (핵의학 종사자의 방사선 피폭에 따른 생체신호 변화 분석)

  • Lee, Hwun-Jae;Lee, Sang-Bock
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.27-34
    • /
    • 2007
  • In this paper, We are evaluated about bio-signal between general workers and nuclear medicine workers which is more radiation exposure relatively. In order to reciprocal evaluated two group, we experimented nuclear medicine workers in Chung-Buk National University Hospital at department of nuclear medicine and worker in Chon-Nam National University Hospital at CT room, general radiographic room, medical recording room, receipt room, general office room. Used of experimental Equipments as follows, for a level of radiation measurement by pocket dosimeter which made by Arrow-Tech company, for heart rate and blood pressure measurement by TONOPORT V which made by GE medical systems company, for heat flux and skin temperature and energy expenditure measurement by Armband senseware 2000 which made by Bodymedia company. Result of experiment obtains as follows: 1) Individual radiation exposure is recorded 3.05 uSv at department of nuclear medicine and order as follows CT room, general radiograpic room, medical recording room, receipt room, general office room. Department of nuclear medicine more 1.5 times than other places. 2) Radiation accumulated dose is not related to Heat flux, Skin temperature, Energy expenditure. 3) Blood pressure is recorded equal to nuclear medical workers, general officer, general people about systolic blood pressure and diastolic blood pressure. Compared to blood pressure between nuclear medical works which is more radiation exposure and other workers was not changed. Consequently, more radiation exposed workers at nuclear medicine field doesn't have hazard.

A Comparative Analysis on Cooling Energy of Heat Recovery Ventilator and Air Handling Unit in the Office Building (사무용 건물에서 전열교환 환기시스템과 일반공조기의 냉방에너지 비교분석에 관한 연구)

  • Jang, Ji-Hoon;Kim, Hyeonsoo;Auh, Jin-Sun;Leigh, Seung-Bok;Kim, Byungseon-Sean
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2016
  • Purpose: In order to save the energy consumption of buildings, buildings have been constructed with high performance insulation or airtightness. However, high performance insulation or air tightness has led to a poor indoor air quality. Therefore, HRV(Heat Recovery Ventilator) has received attention to save the energy consumption and insure a good air quality. Because existing research is almost about the performance of HRV in residential buildings, This study analyzed the effect of HRV on cooling energy consumption in commercial office building. Method: This study was proceeded at commercial office building in In-cheon. In order to evaluate the energy consumption of HRV, this study proposed two methods: estimating energy consumption of the room installed AHU(Air Handling Unit) system; estimating energy consumption of the room installed HRV system. Therefore, comparison of two methods was proceeded to evaluate energy performance of each method. Result: As the result of comparison between rooms installed AHU and HRV, the experiment showed that energy consumption of the room installed HRV system is about 22% less than the room of AHU system. This conclusion is considered because the room installed HRV system have maintained temperature well at set point temperature $26^{\circ}C$.

Development of comfort algorism for Indoor temperature chagne in Heating System (변동환경 대응을 위한 난방System의 쾌적 알고리즘 개발)

  • Kim, Dong-Gyu;Jeong, Yong-Hyun;Kum, Jong-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2006
  • This study investigated physiology and psychological response of subjects, when heat pump was operated long time within comfort temperature range. Eight subjects were participated for the experiment. Their age was from 22 to 25 years old. The results of this experiment will propose basic data for improving comfort control algorithm in fluctuating environment by using heat pump. When indoor temperature was controlled by heat pump, the conclusion was as follows. 1) When votes of subjects was considered, the thermal comfort neutrality or lower range helped formation of comfort sensation for subjects. 2) When room temperature was lower, thermal comforts of shoulder, knee and foot with subjects thermal comfort showed high correlation. And when room temperature was higher, thermal comfort of face region with subjects thermal comfort showed high correlation. 3) The necessity of temperature change after 50 minutes from initially operating heat pump demands the additional analysis against the physiological signal.

Development of drying apparatus using 2-way condensation for marine products (2방식 응축을 이용한 수산물 건조 장치 개발)

  • Hwang, Jea-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.4
    • /
    • pp.259-266
    • /
    • 2006
  • In this study, the 2-way condensation system was designed applying air-to-air heat pump to dry a marine product such as squid in the winter. And to be made the drying apparatuses by this system, there are two kinds of type, A type, was set a compressor outside of the drying apparatus, B type, was set a compressor in the drying room. And then the variations of temperature in drying room were measured to compare the heating performance of the drying apparatuses between A type and B type at $-6.5^{\circ}C$, outdoor temperature. The temperature of the drying room for B type was increased to $36^{\circ}C$ but the temperature of the drying room for A type was not increased to $36^{\circ}C$, to be increased to $20^{\circ}C$.

Cooling and Heating Performance Evaluation of a GSHP System (지열원 열펌프 시스템의 냉${\cdot}$난방 성능 평가)

  • Sohn Byong Hu;Cho Chung-Sik;Shin Hyun-Jun;An Hyung-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.71-81
    • /
    • 2005
  • The main objective of the present study is to investigate the performance characteristics of a ground-source heat pump(GSHP) system with a 130 m vertical and 62 mm nominal diameter U-tube ground heat exchanger. In order to evaluate the performance analysis, the ground-source heat pump connected to a test room with $90\;m^2$ floor area in the Korea Institute of Construction $Technology(37^{\circ}39'N,\;126^{\circ}48'E)$ was designed and constructed. This ground-source heat pump system mainly consisted of ground heat exchanger, indoor heat pumps and measuring devices. The cooling and heating loads of the test room were 5.5 and 7.2 kW at design conditions, respectively. The experimental results were obtained from July 2, 2003 to July 1, 2004. The cooling and heating performance coefficients of the system were determined from the measured data. The average cooling and heating COPs for the system were obtained to be 4.90 and 3.96, respectively. The temperature variations in ground and the ground heat exchanger pipe surface at different depths were also measured.

Development of the active magnetic regenerative refrigerator for room temperature application (상온 능동형 자기 재생 냉동기의 개발)

  • Park, I.;Kim, Y.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.60-64
    • /
    • 2012
  • In this paper, an investigation of a room temperature active magnetic regenerative refrigerator is carried out. Experimental apparatus includes two active magnetic regenerators containing 186 g of Gd spheres. Four E-type thermocouples are installed inside the Active magnetic regenerator(AMR) to observe the instantaneous temperature variation of AMR. Both warm and cold heat exchangers are designed for large temperature span. The cold heat exchanger, which separates the two AMRs, employs a copper tube with length of 80 mm and diameter of 6.35 mm. In order to minimize dead volume between the warm heat exchanger and AMRs, the warm heat exchangers are located close to the AMRs. The deionized water is used as a heat transfer fluid, and maximum 1.4 T magnetic field is supplied by Halbach array of permanent magnets. The AMR plate, which contains the warm and the cold heat exchangers and the AMRs, has reciprocating motion using a linear actuator and each AMR is alternatively magnetized and demagnetized by a Halbach array of permanent magnet. Since the gap of the Halbach array of permanent magnets is 25 mm and two warm heat exchangers have the motion through it, a compact printed circuit heat exchanger (PCHE) is used as a warm heat exchanger. A maximum no-load temperature span of 26.8 K and a maximum cooling power of 33 W are obtained from the fabricated Active Magnetic Regenerative Refrigerator (AMRR).

Performance Analysis of Ground-Coupled Heat Pump System with Slinky-Type Horizontal Ground Heat Exchanger (수평형 지열 히트펌프 시스템의 냉난방 성능 분석)

  • Sohn, Byong-Hu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.230-239
    • /
    • 2012
  • Ground-coupled heat pump (GCHP) systems utilize the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. The main objective of the present study is to investigate the cooling and heating performance of a small scale GCHP system with horizontal ground heat exchanger (HGHE). In order to evaluate the performance, a water-to-air ground-source heat pump unit connected to a test room with a net floor area of 18.4 m2 and a volume of 64.4 m3 in the Korea Institute of Construction Technology ($37^{\circ}39'N$, $126^{\circ}48'E$) was designed and constructed. This GCHP system mainly consisted of slinky-type HGHE with a total length of 400 m, indoor heat pump, and measuring devices. The peak cooling and heating loads of the test room were 5.07 kW and 4.12 kW, respectively. The experimental results were obtained from March 15, 2011 to August 31, 2011 and the performance coefficients of the system were determined from the measured data. The overall seasonal performance factor (SPF) for cooling was 3.31 while the system delivered heating at a daily average performance coefficients of 2.82.

Investigation of the Relationship Between Wall Thermal Conductivity and Inner Room Temperature in Compartment Fires (구획화재에서 벽면의 열전도 계수와 내부 온도의 상관관계 분석)

  • You, Woo Jun;Ko, Gwon-Hyun
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.17-23
    • /
    • 2018
  • In this study, the relations of the wall thermal conductivity and surface temperature in a compartment fire are investigated using Buckingham Pi theorem. The dimensionless parameters of the previous study are analyzed in order to correlate the dimensionless groups of the heat release rate, the thermal conductivity, the volume of compartment and the convective heat transfer coefficient. In addition the reduced scale of compartment, which has 1/6 size of ISO 9705 Room Corner Tester, is manufactured and the oxygen concentration and the maximum temperature in the space are measured for the gasoline pool fire ($10cm{\times}10cm$, $15cm{\times}15cm$ and $20cm{\times}20cm$). Finally, the criterion of the wall temperature increase are suggested in accordance with the thermal conductivity and the convective heat transfer coefficient. In addition, the dimensionless empirical equation using Buckingham Pi theorem considering the heat release rate are presented suggested. The results of this study will be useful especially for the fire phenomenon investigation of the wall thermal conductivity coefficient and shape in the compartment space.

An Experimental Study on Energy Reduction of an Exhaust Air Heat Recovery Type Outdoor Air Conditioning System for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 배기 열회수식 외기공조시스템의 에너지절감에 관한 실험적 연구)

  • Song, Gen-Soo;Yoo, Kyung-Hoon;Kang, Shin-Young;Son, Seung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.273-281
    • /
    • 2009
  • In recent semiconductor manufacturing clean rooms, the energy consumption of outdoor air conditioning systems represents about 45% of the total air conditioning load required to maintain a clean room environment. Meanwhile, there is a large amount of exhaust air from a clean room. From an energy conservation point of view, heat recovery from the exhaust air is therefore useful for reducing the outdoor air conditioning load for a clean room. In the present work, an energy-efficient outdoor air conditioning system was proposed to reduce the outdoor air conditioning load by utilizing an air washer to recover heat from the exhaust air. The proposed outdoor air conditioning system consisted mainly of a preheating coil, an air washer, two stage cooling coils, a reheating coil, a humidifier and two heat recovery cooling coils inserted into the air washer and connected to a wet scrubber. It was shown from the lab-scale experiment with outdoor air flow of $1,000\;m^3/h$ that the proposed system was more energy-efficient for the summer and winter operations than an outdoor air conditioning system with a simple air washer.

Experimental Study on the Measurement of Fire Behavior and Heat Release Rate in Building Compartment Space - Focus on Full Scale Fire Test of the Bed Mattress - (건축물 구획공간에 따른 화재성상 및 열방출율 측정에 관한 실험적 연구 - 실물규모 침대 매트리스 화재시험 중심으로 -)

  • Seo, Bo-Youl;Jang, Woo-Bin;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.28-33
    • /
    • 2018
  • To measure the full scale fire test and heat release rate of bed mattresses according to the building compartment space, a fire test was performed using the Standard test method to determine the heat release rate of mattresses and mattress sets (KS F ISO 12949: 2011). Both test locations showed similar fire growth until approximately 3 minutes after burner ignition. After 3 minutes, the heat release rate in the test room was higher than the open calorimeter. For bed mattresses (SS), the maximum heat release rate in the open calorimeter was 735 kW and the maximum heat release rate in the test room was 992 kW. For bed mattresses (Q), the heat release rate in the test room increased more rapidly than the open calorimeter. The maximum heat release rate in the open calorimeter was 1,087 kW (346 s) and the maximum heat release rate in the test room was 2,127 kW (287 s). The difference between the maximum heat release rate and the measurement time according to the test location was confirmed.