• 제목/요약/키워드: Heat medium

검색결과 817건 처리시간 0.02초

마이크로웨이브와 열전매체유를 이용한 슬러지 건조방법 (Sludge Drying Method Using Microwave Drying Device and Heat Transfer Medium Oil)

  • 김용렬;손민일
    • 한국응용과학기술학회지
    • /
    • 제28권3호
    • /
    • pp.367-373
    • /
    • 2011
  • This research is a basic researching process for producing solid fuel that mixing paper sludge and Heat Transfer Medium Oil. Under the presence of Heat Transfer Medium Oil, paper sludge is heated and dried with home appliance microwave for comparing drying efficiency and energy efficiency of different types of drying method. As a result, Heat Transfer Medium Oil and paper mixing case of drying method, OMD, is the most efficient way to shorten the time for evaporating moisture in the paper sludge. In addition, heat transfer effect and density is increased with adding Heat Transfer Medium Oil by microwave. Future more, OMD's energy cost for evaporating whole moisture is 78% cheaper than MD. Also, OMD process shows the best energy efficiency with comparing other process. Evaporation rate of paper sludge evaporation process with microwave is 11.66% increased by adding Heat Transfer Medium Oil 150g. Preheating Heat Transfer Medium Oil or improving different ways injecting Heat Transfer Medium Oil is a good way to increase a rate of initiative moisture evaporation process.

잠열 축열 - 바이오 세라믹 온돌의 난방 특성 - 이론적 분석을 중심으로 - (Floor Heating Characteristics of Latent Heat Storage - Bioceramic Ondol - Focused on Theoretical Analysis -)

  • 송현갑;유영선
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1995년도 춘계학술발표회 초록집
    • /
    • pp.213-222
    • /
    • 1995
  • Korean traditional Ondol with the sensible heat storage medium has been for a long time used as residential heating system, in these days the concrete Ondol without the heat storage medium was realized as the heating system in the private houses and the apartments. This floor heating system is good for our health. But the concrete Ondol is not desirable for the energy saving and for the maintenance of comfortable room temperature because the heat storage medium is not employed in the concrete Ondol. And as the hot water circulating pipes ate buried under the the concrete floor, the concrete Ondol system has some kind of problems to be improved. Therefore the new type of Ondol system was developed in this study. And the new Ondol was consisted of latent heat storage material as heat storage medium with a great heat capacity and bioceramics as medium to maintain comfortable room temperature. In this study, the heat transfer characteristics of latent heat storage-bioceramic Ondol was analyzed theoretically.

  • PDF

열매체유 유동층 열교환기의 전열성능에 대한 실험적 연구 (An Experimental Study on Heat Transfer Performance of Heating Medium Oil Fluidized Bed Heat Exchanger)

  • 박상일;고창복;이영수
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.146-151
    • /
    • 2015
  • The heat transfer performance of heating medium oil fluidized bed heat exchanger was measured. The operation variables were air flow rate, air inlet temperature, moisture content, water flow rate and water inlet temperature. The outside heat transfer coefficient was determined from the heat exchanger experiment and its experimental correlation was determined as a function of air velocity and viscosity of heating medium oil. Effect of viscosity was well agreed with the previous studies. Errors of the correlation equation was less than about 10% for outside heat transfer coefficient developed in this study when compared with the measured value. Hot water with the temperature greater than $77^{\circ}C$ could be produced by using the heating medium oil fluidized bed heat exchanger.

구형 복사 매질에서의 비정상 열전달 특성에 관한 연구 (Unsteady Heat Transfer in Radiatively Active Spherical Medium)

  • 한상헌;백승욱;안국영
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2582-2589
    • /
    • 1993
  • Transient heat transfer characteristics of cooling of a spherical body were investigated in the radiatively active spherical medium. Initially the spherical body and the medium were maintained at their constant temperatures. Then heat transfer begins from spherical body t medium. The heat transfer mode inside the spherical body is just conduction. But heat is transferred by both conduction and radiation inside the medium. All thermodynamic properties were held constant in time. Spherical symmetry is assumed. DOM was adopted to solve RTE. The effect of characteries-tic optical thickness, conduction to radiation parameters, and solid surface emissivity has been studied.

열펌프-잠열축열시스템을 이용한 온돌의 난방특성 (Heating Characteristics of Ondol using Heat Pump-Latent Heat Storage System)

  • 김명헌;송현갑
    • 태양에너지
    • /
    • 제20권3호
    • /
    • pp.1-9
    • /
    • 2000
  • In these days the hot water circulating Ondol using the fossil fuel boiler is the heating system for the most of the Korean residents. Then it is installed without the heat storage medium in the Ondol heating layer, but the Korean traditional Ondol had been composed with the heat storage medium. The Ondol room without heat storage medium could not be comfortable because the room air temperature is not only changed unstably but also it has a defect too much fuel consumption. Therefore in this study the heat pump-latent heat storage Ondol as the new type of Ondol system was developed to solve these problems mentioned above, and the COP of the heat pump (Coefficient Of Performance), the latent heat storage characteristics in the new type of Ondol system and the temperature variation in the Ondol room with the ambient temperature were analyzed.

  • PDF

Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method

  • Xiangyang Liu;Jimin Xu;Tianwang Lai ;Maogang He
    • Advances in nano research
    • /
    • 제15권3호
    • /
    • pp.191-201
    • /
    • 2023
  • In order to develop better method to enhance and control the flow and heat transfer inside the radiator of electronic device, the synergistic effect of MHD nanofluids and porous medium on the flow and heat transfer in rectangular opened channel is simulated using Lattice Boltzmann method. Three nanofluids of CuO-water, Al2O3-water and Fe3O4-water are studied to analyze the influence of the type of nanofluid on the synergistic effect. The simulation results show that the porous medium can increase the flow velocity in fluid zone adjacent to the porous medium and enhance the heat transfer on the surface of the channel. Under no magnetic field, when the porosity of porous medium is 0.8, the Nusselt number is 4.46% higher than when the porosity is 0.9. Al2O3-water has the best heat transfer effect among the three nanofluids. At Ф=0.06, Ha=100, θ=90°, ε=0.9, Nu of Al2O3-water is 6.51% larger than that of CuO-water and 5.05% larger than that of Fe3O4-water. Magnetic field enhances seepage in porous medium and inhibits heat transfer in the bottom wall. When Ha=30 and 60, the inhibiting effect is the most significant as the magnetic field angle is 90°. And when Ha=100, the inhibiting effect is the most significant as the magnetic field angle is 120°.

원관내 부채꼴 휜 주위에서의 열전달 최적화 (Heat Transfer Optimization in a Tube with Circular-Sectored Fins)

  • 유재욱;김성진;현재민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.57-64
    • /
    • 2000
  • The present work investigates the heat transfer characteristics for laminar fully developed forced convection in an internally finned tube with axially uniform heat flux and peripherally uniform temperature through analytical models of convection in a porous medium. Using the Brinkman-extended Darcy flow model and the two equation model fur heat transfer, analytical solutions fur fluid flow and heat transfer are obtained and compared with the exact solution for fluid flow and the numerical solutions for conjugate heat transfer to validate the porous medium approach. Using the analytical solutions, parameters of engineering importance are identified and their effects on fluid flow and heat transfer are studied. Also, the expression fur total thermal resistance is derived from the analytical solutions and minimized in order to optimize the thermal performance of the internally finned tubes.

  • PDF

중온 태양열 축열조용 히트파이프의 작동액체 충전량이 열성능에 미치는 영향 (The Effect of Working Fluid Charge on the Performance of a Heat Pipe for Medium-temperature Solar Thermal Storage System)

  • 박민규;부준홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.68-73
    • /
    • 2011
  • An experimental study was conducted to investigate the thermal performance of a medium-temperature heat pipe against the charge amount of working fluid. The container and the wick of the heat pipe were made of stainless steel and the working fluid was Dowtherm-A for medium-temperature applications around $250^{\circ}C$. The diameter and length of the heat pipe were 25.4 mm and 1 m, respectively. The maximum thermal load was 1 kW and the working fluid charge ratio varied from 372% to 420%. The results showed that the thermal resistance ranged from 0.12 to $250^{\circ}C/W$ and the effective thermal conductance ranged from 7,703 to $8,898 W/m{\cdot}K$. Dry-out occurred for the heat pipe with 372% fill-charge at the heat load of 950 W, while the other heat pipes with higher charge amount did not encounter dry-out up to 1060 W.

  • PDF

대장균의 내열성장독소 생산조절기전 -I. 장독성대장균의 내열성장독소생산에 인산염, 암모니아, 포도당 및 포도당 대사산물이 미치는 영향- (Regulation of Heat-Stable Enterotoxin Production in Escherichia coli -1. Effeets of Phosphate, Ammonia, Glucose, and Glucose Metabolites on the Heat-Stable Toxin Production by Enterotoxigenic Escherichia coli-)

  • 김익상;홍태의;이우곤;장우현
    • 대한미생물학회지
    • /
    • 제20권1호
    • /
    • pp.55-63
    • /
    • 1985
  • Phosphate, ammonia, glucosamine, glucose, pyruvate, succinate, fumarate, malate and acetate were examined for their ability to control the heat-stable enterotoxin (ST) production in succinate salts medium or in M9 medium. The results obtained were summerized as follows. 1. When the initial phosphate concentration was adjusted to 1.0mM, ST production was decreased to 80u/ml or less. But when the initial phosphate concentration was adjusted to 64mM or 100mM, enterotoxin production was 320u/ml. 2. When the initial ammonia concentration in the medium was adjusted to 1.0mM, no ST production and cell growth were observed. But when ammonia concentration was adjusted to 10mM, 19mM, 38mM or 76mM, enterotoxin production was 320u/ml. 3. Among carbon sources, glucosamine, glucose, pyruvate, succinate, fumarate, malate and acetate, acetate supported the highest specific production (928 unit/O.D.) of heat-stable enterotoxin. From this results, we could assume that heat-stable enterotoxin production is controlled by stringent control mechanism. 4. When the pH of the succinate salts medium was kept between 6.2 to 6.5, no heat-stable enterotoxin production was observed, but when the pH of the medium was kept between pH 6.2 to 6.5, 267 unit/O.D. of heat-stable enterotoxin was produced. 5. Glucose inhibited the heat-stable enterotoxin production and the mechanism was assumed due to its capacity to lower the pH of the medium during catabolysis and its high metabolic energy.

  • PDF

유한한 평판에서 포물선형 및 쌍곡선형 열전도 방정식과 파동 방정식의 비교 해석 (Comparative Analysis of the Parabolic and Hyperbolic Heat Conduction and the Damped Wave in a Finite Medium)

  • 박상규;이용호
    • 동력기계공학회지
    • /
    • 제3권3호
    • /
    • pp.14-21
    • /
    • 1999
  • The wave nature of heat conduction has been developed in situations involving extreme thermal gradients, very short times, or temperatures near absolute zero. Under the excitation of a periodic surface heating in a finite medium, the hyperbolic and parabolic heat conduction equations and the damped wave equations in heat flux are presented for comparative analysis by using the Green's function with the integral transform technique. The Kummer transformation is also utilized to accelerate the rate of convergence of these solutions. On the other hand, the temperature distributions are obtained through integration of the energy conservation law with respect to time. For hyperbolic heat conduction, the heat flux distribution does not exist throughout all the region in a finite medium within the range of very short times(${\xi}<{\eta}_l$). It is shown that due to the thermal relaxation time, the hyperbolic heat conduction equation has thermal wave characteristics as the damped wave equation has wave nature.

  • PDF