• Title/Summary/Keyword: Heat input capacity

Search Result 74, Processing Time 0.035 seconds

Application of Heat Balance Model Design of Ventilating and Cooling Greenhouse (온실의 환기 및 냉방 설계를 위한 열평형 모델의 작용)

  • 남상운
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.201-206
    • /
    • 2000
  • A certain system to overcome high temperature should be introduced for the stable year-round cultivation in greenhouses. There are efficient methods to overcome high temperature such as ventilation system with shading screen, fan and pad system with screen, and fog system with screen. This study was carried out to find a means to determine the capacity of such system. Heat balance equations for each system were established and verified by experimental results. The calculated ventilation rates from heat balance equations showed a good agreement with the measured ones. The evapotranspiration coefficient was the most important parameter affecting the ventilation requirement among input parameter affecting the ventilation requirement among input parameters except weather data. When the evaportanspiration coefficient increased 1%, the ventilation requirement decreased 1.3%. Therefore the data of evapotranspiration coefficient should be accumulated by various experiments, and then design standards and selection guidelines should be provided. The simulation results for same design conditions shown that air exchanges requirement and evaporating water of fan and pad system were 5.1∼7.7% and 6.8∼9.3% larger than those of fog system, respectively.

  • PDF

Estimation of Theoretical and Technical Potentials of Geothermal Power Generation using Enhanced Geothermal System (우리나라 EGS 지열발전의 이론적 및 기술적 잠재량 평가)

  • Song, Yoon-Ho;Baek, Seung-Gyun;Kim, Hyoung-Chan;Lee, Tae-Jong
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.513-523
    • /
    • 2011
  • We estimated geothermal power generation potential in Korea through Enhanced Geothermal System (EGS) technology following the recently proposed protocol which was endorsed by international organizations. Input thermal and physical data for estimation are density, specific heat and thermal conductivity measurements from 1,516 outcrop samples, 180 heat production, 352 heat flow, and 52 mean surface temperature data. Inland area was digitized into 34,742 grids of $1'{\times}1'$ size and temperature distribution and available heat were calculated for 1 km depth interval from 3 km down to 10 km. Thus estimated theoretical potential reached 6,975 GW which is 92 times total generation capacity of Korea in 2010. Technical potential down to 6.5 km and considering land accessibility, thermal recovery ratio of 0.14 and temperature drawdown factor of $10^{\circ}C$ was 19.6 GW. If we disregard temperature drawdown factor, which can be considered in estimating economic potential, the technical potential increases up to 56 GW.

Combustion Characteristics of Premixed Burner for Fuel Reformer (개질기용 예혼합 연소장치의 연소특성 연구)

  • Lee, Pil-Hyong;Lee, Jae-Young;Han, Sang-Seok;Park, Chang-Soo;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

Dissimilar Metal Welding of Nd:YAG Laser of Austenitic Stainless Steel and Medium Carbon Steel (중탄소강과 오스테나이트계 스테인레스강의 Nd:YAG 레이저의이종금속 용접)

  • Shin H.J.;Yoo Y.T.;Ahn D.G.;Im K.;Shin B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1560-1565
    • /
    • 2005
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

  • PDF

Dissimilar Metal Welding of Medium Carbon Steel and Austenitic Stainless Steel utilize CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 중탄소강과 오스테나이트계 스테인레스강의 이종금속 용접)

  • Shin Ho-Jun;Ahn Dong-Gu;Im Kie-Gon;Shin Byung-Heon;Yoo Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.47-55
    • /
    • 2006
  • Laser welding of dissimilar metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research is to investigate the influence of the process parameters, such as the welding for SM45C and STS304 with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the dissimilar welding, the welding quality of the cut section, stress-strain behavior and the hardness of the welded metal are investigated. From the results of the investigation, it has been shown that the optimal voiding condition without defects in the vicinity of the welded area and with a good welding quality is 1600W of the laser power, 0.85m/min of welding speed and $4{\ell}/min$ of pressure for shielding gas.

Welding Characteristics of Cold Rolled Carbon Steel utilize CW Nd:YAG Laser (CW Nd:YAG 레이저를 이용한 냉연강판의 용접특성)

  • Shin B.H.;Yoo Y.T.;Shin H.J.;Ahn D.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.17-18
    • /
    • 2006
  • Laser welding of metals has been widely used to improve a wear resistance and a corrosion resistance of the industrial parts. The objective of this research works is to investigate the influence of the process parameters, such as the welding for metals with CW Nd:YAG lasers. The bead-on-plate welding tests are carried out for several combinations of the experimental conditions. In order to quantitatively examine the characteristics of the butt welding, the welding quality of the cut section, stain-stress behavior and the hardness of the welded part are investigated. From the results of the investigation, it has been shown that the optimal welding condition without defects in the vicinity of the welded area and with a good welding quality is 1400W of the laser power, 0.8m/min, 0.9m/min of welding speed and $4{\ell}$ in of pressure for shielding gas.

  • PDF

The influence of significant design factor on CO and NOx emission in gas cooktop burner (가스 쿡탑 버너에서 디자인 형상이 배기배출물에 미치는 영향)

  • Jeong, Yong-Ki;Kim, Yoong-Soo;Yang, Dae-Bong;Kim, Yang-Ho;Ryu, Jong-Wan;Wie, Jae-Hyug;Lim, Jae-Beom;Seok, Jun-Ho;Chang, Yoong-June;Jeon, Chung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2192-2197
    • /
    • 2008
  • An experimental study was performed to investigate the effects of configuration of burner and air excess ratio on CO & NOx emission characteristics of the cooktop burners which are used extensively. In this study, the combustion characteristics were investigated with the variation of design factor of cooktop burners. The results showed that as the thermal input increases, flammable region go narrower. With the increase of loading height from the cap to grate, the CO emission decrease owing to the reduction of quenching by flame impingement on the load. Additionally, the CO emission increase with angle of main slot, however the NO emission is almost unaffected.

  • PDF

Development of an Optimization Program for a 2G HTS Conductor Design Process

  • Kim, K.L.;Hwang, S.J.;Hahn, S.;Moon, S.H.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The properties of the conductor.mechanical, thermal, and electrical-are the key information in the design and optimization of superconducting coils. Particularly, in devices using second generation (2G) high temperature superconductors (HTS), whose base materials (for example, the substrate or stabilizer) and dimensions are adjustable, a design process for conductor optimization is one of the most important factors to enhance the electrical and thermal performance of the superconducting system while reducing the cost of the conductor. Recently, we developed a numerical program that can be used for 2G HTS conductor optimization. Focusing on the five major properties, viz. the electrical resistivity, heat capacity, thermal conductivity, Z-value, and enthalpy, the program includes an electronic database of the major base materials and calculates the equivalent properties of the 2G HTS conductors using the dimensions of the base materials as the input values. In this study, the developed program is introduced and its validity is verified by comparing the experimental and simulated results obtained with several 2G HTS conductors.

Advanced New Process Development of Two-Stage Swirl Calciner

  • Suh, Hyung-Suhk;Park, Choon-Keun;Ryu, Jae-Sang;Kwak, Hong-Bae
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.296-302
    • /
    • 1999
  • The state of the art of the 2-stage swirl calciner is to make 2-stage counter gas flow in a calciner with cooler hot air. Gas flow in the calciner increases retention time of raw mix particles. Simple structure of the 2-stage swirl calciner operated optimally the rotary cement kiln. In this study, in order to decide the entrance type of the cooler air of the optimal calciner model, an entrance cooler air velocity, the input points of raw mix were analyzed in many aspects with cold model experiment and computational fluidized dynamic simulation. It was found that the entrance type of cooler air fully splite 2-stage for the optimal condition of the cold model calciner. The operation conditions were that the input feeding, the cooler air velocity and the air velocity of throat were 0.33kg/$\textrm m$3$, 15m/s and 20m/s respectively. The performance of 150 t/d the pilot plant connected with the kiln rising duct was that volume capacity of the calciner is over 430 kg/$\textrm m$3$-h, decarbonation rate of raw mix apparently 90%, heat consumption 950 kcal/kg-cli and retention time of raw mix 2.4 sec. Its the best operating condition is cooler air velocity 18m/s, the gas velocity of throat 25m/s, feeding rate of raw mix 10t/h. The operating experience of the pilot plant confirmed the success of scale up for over 3000 t-cli/d.

  • PDF

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 1180 Steels (인장전단시험을 이용한 TRIP1180강의 계면파단특성 평가)

  • Park, Sang-Soon;Choi, Young-Min;Nam, Dae-Geun;Kim, Young-Seok;Yu, Ji-Hun;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.81-91
    • /
    • 2008
  • The weldability of resistance spot welding of TRIP1180 steels for automobile components investigated enhance in order to achieve understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP1180 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the spot welded samples, the load-carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface also, dimple fracture areas were drawmatically increased with heat input which is propotional to the applied weld current. In spite of the high hardness values associated with the martensite microstructures due to high cooling rate. The high load-carrying ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP1180 steels, the load-carrying capacity of the weld should be considered as an important factor than fracture mode.