DOI QR코드

DOI QR Code

Estimation of Theoretical and Technical Potentials of Geothermal Power Generation using Enhanced Geothermal System

우리나라 EGS 지열발전의 이론적 및 기술적 잠재량 평가

  • Song, Yoon-Ho (Geothermal Resources Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Baek, Seung-Gyun (Kongju National University) ;
  • Kim, Hyoung-Chan (Geothermal Resources Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Tae-Jong (Geothermal Resources Department, Korea Institute of Geoscience and Mineral Resources)
  • 송윤호 (한국지질자원연구원 지열자원연구실) ;
  • 백승균 (공주대학교 지역개발연구소) ;
  • 김형찬 (한국지질자원연구원 지열자원연구실) ;
  • 이태종 (한국지질자원연구원 지열자원연구실)
  • Received : 2011.11.15
  • Accepted : 2011.12.20
  • Published : 2011.12.28

Abstract

We estimated geothermal power generation potential in Korea through Enhanced Geothermal System (EGS) technology following the recently proposed protocol which was endorsed by international organizations. Input thermal and physical data for estimation are density, specific heat and thermal conductivity measurements from 1,516 outcrop samples, 180 heat production, 352 heat flow, and 52 mean surface temperature data. Inland area was digitized into 34,742 grids of $1'{\times}1'$ size and temperature distribution and available heat were calculated for 1 km depth interval from 3 km down to 10 km. Thus estimated theoretical potential reached 6,975 GW which is 92 times total generation capacity of Korea in 2010. Technical potential down to 6.5 km and considering land accessibility, thermal recovery ratio of 0.14 and temperature drawdown factor of $10^{\circ}C$ was 19.6 GW. If we disregard temperature drawdown factor, which can be considered in estimating economic potential, the technical potential increases up to 56 GW.

이 연구에서는 최근에 발표되고 국제기구에 의해 공인된 protocol에 따라 인공 지열 저류층 생성 기술(EGS)을 통한 우리나라 지열발전의 잠재량을 평가하였다. 잠재량 추정에 필요한 입력 자료인 암석 밀도, 비열 및 열전도도는 1,516개 암반 시료의 측정값을 이용했으며, 열생산율은 180개 자료, 지열류량은 352개 자료, 그리고 지표면 온도는 54개 자료를 사용하였다. 내륙을 34,742개의 $1'{\times}1'$ 크기 격자로 나누어 3-10 km 깊이 범위에 걸쳐 1 km 깊이 구간별로 온도 분포를 계산하고 이로부터 열에너지 부존량을 계산하였다. 지하 3-10 km 범위의 이론적 잠재량은 6,975 GW로 계산되었고 이는 2010년 우리나라 총 발전용량인 76 GW의 약 92배에 달한다. 기술적 잠재량은 3-6.5 km 깊이, 개발행위가 가능한 지역만을 고려하고 또한 암반으로부터의 열 회수율(0.14)과 발전시설의 온도 특성까지 포함해서 산출되었다. 온도하강요소 $10^{\circ}C$를 고려할 때 총 기술적 잠재량은 19.6 GW로 나타나고 있다. 만약 온도하강요소를 경제적 잠재량에 포함시킬 수 있도록 제외한다면 기술적 잠재량은 56 GW로 늘어난다.

Keywords

References

  1. Ahn, E.-Y. and Song, Y. (2010) Preliminary economic analysis of Enhanced Geothermal System for power generation under FITs and RPS in Korea. J. Korean Society for Geosystem Engineering, v.47, p.254-266.
  2. Beardsmore, G.R., Rybach, L., Blackwell, D. and Baron, C. (2010) A protocol for estimating and mapping the global EGS potential. GRC Transactions, v.34, p.301-312.
  3. Bertani, R. (2003) What is geothermal potential? IGA News, v.53, p.1-3.
  4. Bertani, R. (2010) Geothermal power generation in the world: 2005-2010 update report. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-30 April 2010.
  5. Blackwell, D.D., Negraru, P.T. and Richards, M.C. (2007) Assessment of the Enhanced Geothermal System resource base of the United States. Natural Resources Research, v.15, p.283-308, doi:10.1007/s11053-007-9028-7.
  6. Fridleifsson, I.B., Bertani, R., Huenges, E., Lund, J.W., Ragnarsson, A. and Rybach, L. (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. in Hohmeyer, O., and Trittin, T. (Eds.) IPCC Scoping Meeting on Renewable Energy Sources, Proceedings, Luebeck, Germany, 20-25 January, p.59-80.
  7. IEA (2010) Renewable energy essentials: Geothermal. International Energy Agency, http://www.iea.org.
  8. Kim, H. C. and Lee, Y. (2007) Heat flow in the Republic of Korea. J. Geophys. Res., v.112, B05413, doi:10.1029/2006JB004266.
  9. Koo, M.-H., Song, Y. and Lee, J.-H. (2006) Analyzing spatial and temporal variation of ground surface temperature in Korea. Econ. Environ. Geol., v.39, p.255-268.
  10. Korea Energy Management Corporation (2008) White paper of new and renewable energy 2008. Ministry of Knowledge Economy, 470p.
  11. Lee, T.J. et al. (2008) Development of exploitation technologies for geothermal resources. KIGAM Basic Research Report, GP2007-002-03-2, Ministry of Knowledge Economy, 185p.
  12. Lee, Y., Park, S., Kim, J., Kim, H.C. and Koo, M.-H. (2010) Geothermal resource assessment in Korea. Renewable and Sustainable Energy Reviews, v.14, p.2392-2400. https://doi.org/10.1016/j.rser.2010.05.003
  13. Rybach, L. (2010) "The future of geothermal energy" and its challeges. Proceedings World Geothermal Congress 2010, Bali, Indonesia, 25-29 April 2010.
  14. Song, Y. (2008) Discussion on assessment and competitiveness of the geothermal resources. J. Korean Society for Geosystem Engineering, v.45, p.293-304.
  15. Song, Y. (2010) Generation capacity estimation of pilot plant with Enhanced Geothermal System in Korea. J. Korean Society for Geosystem Engineering, v.47, p.245-253.
  16. Stefansson, V. (2005) World geothermal assessment. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24-29 April 2005.
  17. Tester et al. (2006) The future of geothermal energy - Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, http://www1.eere.energy.gov/geothermal/future_geothermal.html.