• Title/Summary/Keyword: Heat fluxes

Search Result 367, Processing Time 0.027 seconds

Falling Film Heat Transfer on a Horizontal Single Tube (수평단관 상의 유하액막 열전달)

  • 김동관;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.642-648
    • /
    • 2000
  • Falling film heat transfer analyses with aqueous lithium bromide solution were peformed to investigate the transfer characteristics of the copper tubes. Finned(knurled) tube and a smooth tube were selected as test specimens. Averaged generation fluxes of water and the heat transfer performances(heat flux, heat transfer coefficient) were obtained. The results of this work were compared with the data reported previously. As the film flow rate of the solution increased, the generation fluxes of water decreased for both tubes. The reason is estimated by the fact that the heat transfer resistance with the film thickness increased as the film flow rate increased. The effect of the enlarged surface area at the knurled tube was supposed to be dominant at a small flow rate. The generation fluxes of water increased with the increasing degree of tube wall superheat. Nucleate boiling is supposed to occur at a wall superheat of 20 K for a smooth tube, and at 10 K for a knurled tube. The heat transfer performance of the falling film was superior to pool boiling at a low wall superheat below 10 K for both tubes tested. The knurled tube geometry showed good performance than the smooth tube, and the increased performance was mainly came from the effect of the increased heating surface area.

  • PDF

An experimental study on heat transfer characteristics in a vertical micro-fin tube during evaporation process of carbon dioxide flowing upward (이산화탄소의 마이크로 핀관 내 상향유동 증발열전달 특성에 관한 연구)

  • Kim, Yong-Jin;Cho, Jin-Min;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.247-251
    • /
    • 2007
  • Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristics of carbon dioxide flowing upward in a vertical micro-fin tube have been investigated by experiment. Before a test section, a pre-heater is installed to adjust the inlet quality of the refrigerant to a desired value. The micro-fin tube with outer diameter of 5 mm and length of 1.44 m was selected as the test section. The test was conducted at mass fluxes of 318 to $530\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat fluxes of 15 to $30\;kW/m^2$. As the vapor quality increases, the heat transfer coefficients of carbon dioxide are increased, and the heat transfer coefficients increase when the heat fluxes and saturation temperatures increase, and there was not much of influence of mass flux on the heat transfer coefficients.

  • PDF

An Experimental Study on the Characteristics of Evaporative Heat Transfer of Carbon Dioxide (이산화탄소의 증발열전달 특성에 관한 실험적 연구)

  • 조은석;윤석호;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.38-45
    • /
    • 2002
  • Evaporative heat transfer characteristics of carbon dioxide have been investi- gated by experiment. The experiments have been carried out for a seamless stainless steel tube of the outer diameter of 9.55 mm, the inner diameter of 7.75 mm and the length of 5.0 m. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Experiments were conducted with$CO_2$of purity 99.99% at saturation temperatures of 0.0 to 10.5$^{\circ}C$, heat fluxes of 12 to 27kW/$m^2$s and mass fluxes of 212 to 530 kg/$m^2$s. The heat transfer coefficients of $CO_2$are decreased as the vapor quality increases and these phenomena are explained by dimensionless Weber and Bond numbers. The heat transfer coefficients of$CO_2$increase when the heat and mass fluxes increase, and the saturation temperature effects are minor in the test range of this study. The present experimental data are compared with six renowned correlations with root-mean-squared deviations ranging from 23.0 to 94.9% respectively.

Study on Characteristics of Flow Boiling Heat Transfer in Multi channels (수평 다채널 관에서의 유동 비등 열전달 특성에 관한 연구)

  • CHOI, Yong-Seok;LIM, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1310-1317
    • /
    • 2015
  • Two-phase flow boiling heat transfer in micro-channels was experimently investigated. The test section consisted of 15 rectangular micro-channels with a depth of 0.45mm, width of 0.20mm. The experiments were performed for heat fluxes ranging from 5.6 to 46.1kW/m2 and mass fluxes from 150 to 450kg/m2s using FC-72 as the working fluid. According to the results, at the low heat flux region, heat transfer coefficient strongly depends on the heat flux, while heat transfer coefficient at the high heat flux region was independent on the heat flux. Four correlations were used to predict the heat transfer coefficient. The measured heat transfer coefficient was compared with four correlations. It was found that Kaew-On and Wongwises's correlation well predicted the measured data, within the MAE of 40.3%.

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

Near-Wall Modelling of Turbulent Heat Fluxes by Elliptic Equation (타원방정식에 의한 벽면 부근의 난류열유속 모형화)

  • Shin, Jong-Keun;An, Jeong-Soo;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.526-534
    • /
    • 2004
  • A new second-moment closure model for turbulent heat fluxes is proposed on the basis of the elliptic equation. The new model satisfies the near-wall balance between viscous diffusion, viscous dissipation and temperature-pressure gradient correlation, and also has the characteristics of approaching its respective conventional high Reynolds number model far away from the wall. The predictions of turbulent heat transfer in a channel flow have been carried out with constant wall heat flux and constant wall temperature difference boundary conditions respectively. The velocity field variables are supplied from the DNS data and the differential equations only fur the mean temperature and the scalar flux are solved by the present calculations. The present model is tested by direct comparisons with the DNS to validate the performance of the model predictions. The prediction results show that the behavior of the turbulent heat fluxes in the whole region is well captured by the present model.

Evaporation of Water in an Aqueous Lithium Bromide Solution flowing over a Horizontal Tube

  • Kim, Dong-Kwan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.57-62
    • /
    • 2001
  • Falling film heat transfer analyses with aqueous lithium bromide solution were performed to investigate the transfer characteristics of the copper tubes. Finned (knurled) tube and a smooth tube were selected as test specimens. Averaged generation fluxes of water and the heat flux were obtained. As the film flow rate of the solution increased, the generation fluxes of water decreased for both tubes due to the fact that the heat transfer resistance increased with the film thickness. The effect of the enlarged surface area at the knurled tube was supposed to be dominant at a small flow rate. The generation fluxes of water increased with the increasing degree of tube wall superheat. Nucleate boiling is supposed to occur at a wall superheat of 20K for a smooth tube, and at 10K for a knurled tube. The increased performance of the knurled tube was supposed to mainly come from the effect of the increased heating surface area.

  • PDF

Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data (해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출)

  • Kim, Sun-Bok;Chang, Kyung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 2014
  • Monthly mean surface heat fluxes in the southeastern Yellow Sea are calculated using directly observed airsea variables from an ocean buoy station including short- and longwave radiations, and COARE 3.0 bulk flux algorithm. The calculated monthly mean heat fluxes are then compared with previous estimates of climatological monthly mean surface heat fluxes near the buoy location. Sea surface receives heat through net shortwave radiation ($Q_i$) and loses heat as net longwave radiation ($Q_b$), sensible heat flux ($Q_h$), and latent heat flux ($Q_e$). $Q_e$ is the largest contribution to the total heat loss of about 51 %, and $Q_b$ and $Q_h$ account for 34% and 15% of the total heat loss, respectively. Net heat flux ($Q_n$) shows maximum in May ($191.4W/m^2$) when $Q_i$ shows its annual maximum, and minimum in December ($-264.9W/m^2$) when the heat loss terms show their annual minimum values. Annual mean $Q_n$ is estimated to be $1.9W/m^2$, which is negligibly small considering instrument errors (maximum of ${\pm}19.7W/m^2$). In the previous estimates, summertime incoming radiations ($Q_i$) are underestimated by about $10{\sim}40W/m^2$, and wintertime heat losses due to $Q_e$ and $Q_h$ are overestimated by about $50W/m^2$ and $30{\sim}70W/m^2$, respectively. Consequently, as compared to $Q_n$ from the present study, the amount of net heat gain during the period of net oceanic heat gain between April and August is underestimated, while the ocean's net heat loss in winter is overestimated in other studies. The difference in $Q_n$ is as large as $70{\sim}130W/m^2$ in December and January. Analysis of long-term reanalysis product (MERRA) indicates that the difference in the monthly mean heat fluxes between the present and previous studies is not due to the temporal variability of fluxes but due to inaccurate data used for the calculation of the heat fluxes. This study suggests that caution should be exercised in using the climatological monthly mean surface heat fluxes documented previously for various research and numerical modeling purposes.

Estimation of Land Surface Energy Fluxes using CLM and VIC model (CLM과 VIC 모형을 활용한 지표 에너지 플럭스 산정)

  • Kim, Daeun;Ray, Ram L.;King, Seokkoo;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.166-172
    • /
    • 2016
  • Accurate understanding of land surface is essential to analyze energy exchanges between earth surface and atmosphere. For the quantization of energy fluxes, the various researches about Land Surface Model(LSM) have been progressed. Among the various LSMs, the researches using Common Land Model(CLM) and Variable Infiltration Capacity(VIC) model are performed briskly. The CLM which is advanced LSM can calculate realistic results with few user defined parameters. The VIC model which is also typical LSM is widely used for estimation of energy fluxes and runoff in various fields. In this study, the energy fluxes which are net radiation, sensible heat flux, and latent heat flux were estimated using CLM and VIC model at Southern Sierra-Critical Zone Observatory(SS-CZO) site in California, United States. In case of net radiation and sensible heat flux, both models showed good agreement with observations, however, the CLM showed underestimated patterns of net radiation and sensible heat flux during precipitation period. In case of latent heat flux, the CLM represented better estimation of latent heat flux than VIC model which underestimated the latent heat flux. Through the estimation of energy fluxes and analysis of models' pros and cons, the applicability of CLM and VIC models and need of multi-model application were identified.

Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact (비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향)

  • Lee, Doo-Il;Lee, Jae-Hyeong;Lee, Sang-Hyun
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.