References
- Lai, Y.G. and So, R.M.C., 1990, 'Near-Wall Modeling of Turbulent Heat Fluxes,' Int. J. Heat Mass Transfer, Vol. 33, pp. 1429-1440 https://doi.org/10.1016/0017-9310(90)90040-2
- Shin, J.K., Choi, Y.D. and Lee, G.H., 1993, 'A Low-Reynolds Number Second Moment Closure for Turbulet Heat Fluxes,' Transactions of the KSME, Vol. 17, pp. 3196-3207
- Shikazo, N. and Kasagi, N., 1996, 'Second-Moment Closure for Turbulent Scalar Transport at Various Prandtl Numbers,' Int. J. Heat Mass Transfer, Vol. 39, pp. 2977-2987 https://doi.org/10.1016/0017-9310(95)00339-8
- Craft,T .J., Ince, N.J. and Launder, B.E., 1996, 'Recent Developments in Second-Moment Closure for Buoyancy-Affected Flows,' Dynamics of Atmospheres and Oceans, Vol. 23, pp. 99-114 https://doi.org/10.1016/0377-0265(95)00424-6
- Kim, J. and Moin, P., 1987, 'Transport of Passive Scalars in a Turbulent Channel Flow,' Proceedings of the 6th Symposium on Turbulent Shear Flows, 5-2
- Kasagi, N., Tomita, Y. and Kuroda, A., 1992, 'Direct Numerical Simulation of the Passive Scalar Field in a Turbulent Channel Flow,' ASME J. Heat Transfer, Vol. 114, pp. 598-606
- Kawamura, H., Abe, H. and Shingai, K., 2000, 'DNS of Turbulence and Heat Transport in a Channel Flow with Different Reynolds and Prandtl Numbers and Boundary Conditions,' Turbulence, Heat and Mass Transfer 3, Edited by Nagano, Y., Hanjalic, K., Tsuji, T., pp. 15-32
- Durbin, P.A., 1993, 'A reynolds Stress Model for Near-Wall Turbulence,' J. Fluid Mech., Vol. 249, pp. 465-498 https://doi.org/10.1017/S0022112093001259
- Manceau, R. and Hanjalic, K., 2002, 'Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure,' Phys. Fluids, Vol. 14, pp. 744-754 https://doi.org/10.1063/1.1432693
- Manceau, R. and Hanjalic, K., 2000, 'A New Form of the Elliptic Relaxation Equation to Account for Wall Effects in RANS Modeling,' Phys. Fluids, Vol. 12, pp. 2345-2351 https://doi.org/10.1063/1.1287517
-
Moser, R.D., Kim, J. and Mansour, N.N., 1999, 'Direct Numberical Simulation of Turbulent Channel Flow up to
$Re{\tau}$ =590,' Phys. Fluids, Vol. 11, pp. 943-945 https://doi.org/10.1063/1.869966