• Title/Summary/Keyword: Heat fluxes

Search Result 367, Processing Time 0.025 seconds

Heat Transfer Characteristics of Spray Cooling up to Critical Heat Flux on a Low-fin Enhanced Surface (Low-fin 촉진 표면에서 임계 열유속까지의 분무 냉각 열전달 특성)

  • Lee, Yohan;Kang, Dong-Gyu;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.522-528
    • /
    • 2013
  • Spray cooling is a technology of increasing interest for electronic cooling and other high heat flux applications. In this study, heat transfer coefficients (HTCs) and critical heat fluxes (CHFs) were measured on a smooth square flat copper heater of $9.53{\times}9.53$ mm at $36^{\circ}C$ in a pool, with a smooth flat surface, and 26 fpi. Low-fin surfaces were used to see the change in HTCs and CHFs according to the surface characteristics, and FC-72 was used as the working fluid. FC-72 fluid had a significant influence on the heat transfer characteristics of the spray over the cooling surface. HTCs were taken from 10 $kW/m^2$ to critical heat flux, for all surfaces. Test results with Low-fin showed that the CHFs of all the enhanced surface were greatly improved. It can be said that the surface form affects the heat transfer coefficient and critical heat flux.

Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation (고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석)

  • Park, Young-Hark;Boo, Joon-Hong;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

NUMERICAL STUDY ON COMBINED HEAT TRANSFER IN NIR HEATING CHAMBER (근적외선 열풍기의 복합열전달에 관한 수치적 연구)

  • Choi, H.K.;Yoo, G.J.;Kim, I.H.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.7-13
    • /
    • 2007
  • Numerical analysis is carried out for combined heat transfer in an indirected NIR(Near Infrared Ray) heating chamber. Reynolds number and shapes of absorbed cylinder are known as important parameters on the combined heat transfer effects. Reynolds number based on the outer diameter of the cylinder is varied from $10^3$ to $3{\times}10^5$. Four difference heat transfer regimes are observed: forced convection and radiative heat transfer on the outer surface of the cylinder, pure conduction in the cylinder body, pure natural convection and radiation between lamp surface and inner surface of the cylinder, and radiation from the lamp. Flow and temperature characteristics are presented with iso-contour lines for the absorbed circular and elliptic cylinders to compare their differences. The convective and radiative heat transfer fluxes are also compared with different Reynolds numbers. As usual, Reynolds number is an important factor to estimate increasing convective heat transfer as it increases. The shape of absorbed cylinder results overall heat transfer rates remain unchanged.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

An Observational Study of Parked Cars' Effect in the Sunshine on the Increase of Air Temperature (자동차 양지주차가 기온상승에 미치는 영향에 관한 관측적 연구)

  • Ahn, Ji-Suk;Koo, Hyun-Suk;Park, Myung-Hee;Kim, Hae-Dong
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.45-53
    • /
    • 2007
  • This study investigated the effect of parked cars in the sunshine on the increase of air temperature on a sunny day. Air temperatures were determined both from inside of the parked cars and the top surface of the vehicle at which one car was parked under the sunshine and the other in the shade for the duration of 27 hours. The surface temperatures of asphalt and bare soil were simultaneously measured in both locations, sunshine and shade areas, along with a couple of meteorological factors. The sensible heat fluxes from the surfaces of asphalt, bare soil and two vehicles were estimated by utilizing those observed data. The results are as follows; 1) The surface temperatures of bare soil, asphalt and two vehicles increased with $30{\sim}37^{\circ}C,\;37{\sim}46^{\circ}C\;and\;42{\sim}49^{\circ}C$ respectively during the day. 2) The sensible heat fluxes were noticeably higher from the top surface of the parked vehicle in the sunshine than from the asphalt or bare soil. The differences of sensible heat fluxes between the vehicle's roof and the other two surfaces of asphalt and bare soil were 60 (asphalt) and 85 (bare soil) $W/m^2$ during the daytime.

Mean Heat Flux at the Port of Yeosu (여수항의 평균 열플럭스)

  • Choi Yong-Kyu;Yang Jun-Hyuk
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.653-657
    • /
    • 2006
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) (1995-2004), mean heat fluxes were estimated at the port of Yeosu. Net heat flux was transported from the air to the sea surface during February to September, and it amounts to $205 Wm^{-2}$ in daily average value in May. During October to January, the transfer of net heat flux was conversed from the sea surface to the air with $-70 Wm^{-2}$ in minimum of daily average value in December. Short wave radiation was ranged from $167 Wm^{-2}$ in December to $300 Wm^{-2}$ in April. Long wave radiation (Sensible heat) was ranged from $27 (-14) Wm^{-2}$ in July to $90 (79) Wm^{-2}$ in December. Latent heat showed $42 Wm^{-2}$ with its minimum in July and $104 Wm^{-2}$ with its maximum in October in daily average value.

Experimental study on nucleate boiling heat transfer enhancement using an electric field (전기장을 이용한 핵비등 열전달 촉진에 관한 실험적 연구)

  • Gwon, Yeong-Cheol;Kim, Mu-Hwan;Gang, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.12
    • /
    • pp.1563-1575
    • /
    • 1997
  • To understand EHD nucleate boiling heat transfer enhancement, EHD effects on R-113 nucleate boiling heat transfer in a non-uniform electric field were investigated. The pool boiling heat transfer and the dynamic behavior of bubbles in d.c./a.c. electric fields under a saturated or subcooled boiling were studied by using a plate-wire electrode and a high speed camera. From the pool boiling heat transfer study, the shift of the pool boiling curve, the increase of the heat transfer and the delay of ONB and CHF points to higher heat fluxes were observed. From the dynamic behavior of bubbles, it was observed that bubbles departed away from the whole surface of the heated wire in radial direction due to EHD effects by a nonuniform electric field. With increasing applied voltages, the bubble size decreased and the active nucleation site and the departure number of bubbles showed the different trend. The present study indicates that the EHD nucleate boiling heat transfer is closely connection with the dynamic behavior of bubbles and the secondary flow induced near the heated surface. Therefore, the basic studies on the bubble behavior such as bubble frequency, bubble diameter, bubble velocity and flow characteristics are necessary for complete understanding of the enhancement mechanism of the boiling heat transfer using an electric field.

Pool Boiling Heat Transfer Coefficients Upto Critical Heat flux (임계 열유속 근방까지의 풀 비등 열전달계수)

  • Park, Ki-Jung;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.571-580
    • /
    • 2008
  • In this work, pool boiling heat transfer coefficients(HTCs) of 5 refrigerants of differing vapor pressure are measured on horizontal smooth square surface of 9.52 mm length. Tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from $10\;kW/m^2$ to critical heat flux of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and by thermocouples in the liquid pool. Test results show that pool boiling HTCs of refrigerants increase as the heat flux and vapor pressure increase. This typical trend is maintained even at high heat fluxes above $200\;kW/m^2$. Zuber's prediction equation for critical heat flux is quite accurate showing a maximum deviation of 21% for all refrigerants tested. For all refrigerant data up to the critical heat flux, Stephan and Abdelsalam's well known correlation underpredicted the data with an average deviation of 21.3% while Cooper's correlation overpredicted the data with an average deviation of 14.2%. On the other hand, Gorenflo's and lung et al.'s correlation showed only 5.8% and 6.4% deviations respectively in the entire nucleate boiling range.

An Improved Mechanistic Model to Predict Critical Heat Flux in Subcooled and Low Quality Convective Boiling

  • Kwon, Young-Min;Chang, Soon-Heung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.236-255
    • /
    • 1999
  • An improved mechanistic model was developed to predict a convective boiling critical heat flux (CHF) in the vertical round tubes with uniform heat fluxes. The CHF formula for subcooled and low quality boiling was derived from the local conservation equations of mass, energy and momentum, together with appropriate constitutive relations. The model is characterized by the momentum balance equation to determine the limiting transverse interchange of mass flux crossing the interface of wall bubbly layer and core by taking account of the convective shear effect due to the frictional drag on the wall-attached bubbles. Comparison between the present model predictions and experimental CHF data from several sources shows good agreement over a wide range of How conditions. The present model shows comparable prediction accuracy with the CHF look-up table of Groeneveld et al. Also the model correctly accounts for the effects of flow variables as well as geometry parameters.

  • PDF

Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

  • Mohseni, Mehdi Moayed;Rashidi, Fariborz;Movagar, Mohammad Reza Khorsand
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2015
  • Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.