• 제목/요약/키워드: Heat exchanger method

검색결과 439건 처리시간 0.024초

외부공기 유입방식에 따른 느타리버섯 생육실의 온도변화 및 자실체의 생육특성 (Heating and cooling properties in cultivation room and cultural characteristics of oyster mushroom according to type of air exchange)

  • 장명준;이윤혜;주영철
    • 한국버섯학회지
    • /
    • 제11권4호
    • /
    • pp.214-218
    • /
    • 2013
  • 외부공기 유입방식에 따른 느타리버섯의 생육특성을 조사하기 위하여 3가지 처리구를 두어 실험한 결과 모든 처리구에서 재배기간 중 온도편차가 발생하였고, 처리구 모두 1, 2, 8월에 가장 높았으며, T2(열교환기)와 T3(기밀실)에서 T1(외부공기 직접유입) 보다 온도편차가 작은 경향이었다. 재배기간 중 냉방시간은 T1(외부공기 직접유입)은 1,090.3시간, T2(열교환기)는 661.1시간, T3(기밀실)은 865.0시간이었고, 평균 냉방절감율은 T1(외부공기 직접유입) 대비 T2(열교환기)는 21%, T3(기밀실)은 11%이었다. 재배기간 동안 난방기의 년중 가동시간은 T1(외부공기 직접유입)은 1,506.9시간, T2(열교환기)는 875.6시간, T3(기밀실)은 1,054.2시간으로 T2의 가동시간이 가장 작았고, 년중 평균 난방절감율은 T1(외부공기 직접유입) 대비 T2(열교환기)는 22%, T3(기밀실)은 16%이었다. 외부공기 유입방식에 따른 냉방정도(CD-H)는 T1(외부공기 직접유입)>T3(기밀실)>T2(열교환기)의 순이었고, 난방정도(HD-H)도 냉방정도(CD-H)의 경우와 동일하였다. 수량은 T2(열교환기)와 T3(기밀실)에서 T1(외부공기 직접유입) 보다 4, 9, 10월을 제외한 전 기간에서 높았다. 이와 같은 결과로 시설재배사에서 느타리버섯 병재배시 열교환기 또는 기밀실을 설치하여 재배할 경우 에너지를 절감할 수 있고, 수량 및 고품질의 느타리버섯을 수확할 수 있어 농가소득증대에 기여할 것으로 판단되었다.

인버터 로터리 압축기 오일 토출량 산정의 실험적 고찰 (An Experimental Study on the Estimation of Oil Discharge Rate from Inverter Rotary Compressor)

  • 신현석;변순석;태상진;문제명;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제14권3호
    • /
    • pp.28-32
    • /
    • 2011
  • The inverter rotary compressor discharges refrigerant and compressor oil in air-conditioning systems. The compressor oil which discharged form compressor decreases the efficiency of heat exchanger and affects the compressor operation. Recently, several studies are in progress for reducing the compressor oil. Before the reduction of compressor oil discharge rate, the quantitative measurement and evaluation method are required. In order to cope with this requirement we have developed the measurement technic of oil discharge rate. The reliability assessment was carried out approximately 0.1% of the errors with compressor performance indicators. The acceptable errors were to ensure the reliability of measurement technic. In the experiment results at several conditions, The oil discharge rate of heating operation has been confirmed average 3.7 times more than cooling operation. In this study the evaluation method and the experimental results of oil discharge rate in air-conditioning systems are presented with various operating conditions.

유한요소법을 이용한 헤어핀 형 열 교환기의 튜브 확관에 대한 연구 (Study of Tube Expansion to Produce Hair-Pin Type Heat Exchanger Tubes using the Finite Element Method)

  • 홍석무;현홍철;황지훈
    • 소성∙가공
    • /
    • 제23권3호
    • /
    • pp.164-170
    • /
    • 2014
  • To predict the deformation and fracture during tube expansion using the finite element (FE) method, a material model is considered that incorporates the damage evolution due to the deformation. In the current study, a Rice-Tracey model was used as the damage model with inclusion of the hydrostatic stress term. Since OFHC Cu is not significantly affected by strain rate, a Hollomon flow stress model was used. The material parameters in each model were obtained by using an optimization method. The objective function was defined as the difference between the experimental measurements and FE simulation results. The parameters were determined by minimizing the objective function. To verify the validity of the FE modeling, cross-verification was conducted through a tube expansion test. The simulation results show reasonable agreement with the experiments. The design for a minimum diameter of expansion tube using the FE modeling was verified by a simplified tube expansion test and simulation results.

석탄가스화 복합발전플랜트 가스터빈 압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수연구 (Parametric Study for the Optimal Integration Design between the Gas Turbine Compressor and the Air Separation Unit of IGCC Power Plant)

  • 이찬;김형택
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.160-169
    • /
    • 1996
  • 석탄가스화복합발전소의 가스터빈 공기압축기와 공기분리장치 간의 최적 연계설계를 위한 매개변수 연구를 수행하였다. 본 연구에서는 복수형 증류탑공정의 공기분리장치를 사용하였으며, 증류탑공정의 특성으로부터 압축기와의 연계조건인 공기추출량, 공기추출압력 및 공기/질소 열교환 조건들을 정의, 수식화하였다. 공기분리장치와 연계된 가스터빈용 공기압축기의 성능변화는 유선곡률방법과 압력손실모델을 결합한 해석방법을 사용하였으며, 예측결과들을 실제 압축기성능 시험결과와 비교하여 예측정확도를 검증하였다. 본 압축기성능 해석방법을 이용하여, 압축기와 공기분리장치의 연계조건인 열교환기의 핀치포인트 온도차, 추출공기량 및 추출 공기압력이 압축기성능에 미치는 영향을 정량적으로 검토하였다. 공기추출량이 늘어나거나 핀치포인트 온도차가 커질수록, 압축기의 압축비 및 소요동력은 증가하였다. 반면에, 압축기 효율은 공기추출량의 증가에 따라 고압공기추출시에는 저하되고, 저압공기추출시에는 향상되었다. 더나아가, 압축기의 일반화된 입구조건과 효율간의 특성곡선을 통해, 압축기 효율을 극대화 할 수 있는 압축기/공기분리장치간의 최적연계조건을 제시하였다.

  • PDF

3차원 교차 주름판 내 유동의 불안정성 및 자활 진동 (Instability and Self-Sustained Oscillation of the Flow between Three-Dimensionally Cross-corrugated Plates)

  • 이승엽;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.679-682
    • /
    • 2002
  • Energy dissipations in a general PHE flow are the compounded effects of the piled corrugate geometries and its wall pressure and temperature distributions. In addition, although the exchangers are substantial pieces of engineering equipment, they are composed of a very large number of nominally identical and small geometrical elements. In the present numerical study, the three-dimensionally complicated energy dissipation fields and those wall-shape-induced flow destabilization are investigated in the cross-corrugated passages, which result in high energy transports with comparatively low pressure drop. We revealed the critical conditions as $Re=157.3 for the wall-shape-induced flow destabilization in a general PHE element by initial value method, or shooting method, and compare its value to that of analytical solution of plane Poiseille flow, two-dimensional grooved flow and so on. We also observed the detailed variation of flow field and energy transportation with changes in time and flow variables such as Reynolds number. Lastly, we considered the flow natural frequency, or Strouhal number, with variation of hydrodynamic conditions for the best use of active control, such as forced mass flow rate pulsative flow, to enhance energy transportation.

  • PDF

다공 Al 컨덴서 튜브의 압출공정 해석 (Extrusion Process Analysis for Al Condenser Tube with Multi Hole)

  • 배재호;이정민;김병민
    • 소성∙가공
    • /
    • 제13권8호
    • /
    • pp.723-730
    • /
    • 2004
  • This paper describes the analysis of extrusion process and integrity for a condenser tube which is a component of the heat exchanger in automobile and all conditioning apparatus. Recently, according to the development of analysis method using the computer, the numerical simulation have been applied to the 3-dimensional hot extrusion process with complex section area of the non-steady statement and then results of the analysis have been applied to optimal die design and process design. In this paper, firstly, the die design was performed for a condenser tube with a multi-hole section and the rigid-plasticity FE analysis performed of extrusion process. Secondly, we estimated metal flow of billet, extrusion load, welding pressure in chamber etc. and evaluated the pressure and elastic strain of the die land and mandrel tooth profile through a stress analysis of the die. Finally, the extrusion test was performed to estimate the validity of FE analysis. This paper confirmed that the designed extrusion die of the research is satisfactorily designed fur integrity of condenser tube.

500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구 (A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine)

  • 심한섭
    • 한국기계가공학회지
    • /
    • 제12권6호
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

Optimization of an extra vessel electromagnetic pump for Lead-Bismuth eutectic coolant circulation in a non-refueling full-life small reactor

  • Kang, Tae Uk;Kwak, Jae Sik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3919-3927
    • /
    • 2022
  • This study presents an optimal design of the coolant system of a non-refueling full-life small reactor by analyzing the space-integrated geometrical and electromagnetic variables of an extra vessel electromagnetic pump (EVEMP) for the circulation of a lead-bismuth eutectic (LBE) coolant. The EVEMP is an ideal alternative to the thermal-hydraulic system of non-refueling full-life micro reactors as it possesses no internal structures, such as impellors or sealing structures, for the transportation of LBE. Typically, the LBE passes through the annular flow channel of a reactor, is cooled by the heat exchanger, and then circulates back to the EVEMP flow channel. This thermal-hydraulic flow method is similar to natural circulation, which enhances thermal efficiency, while providing a golden time for cooling cores in the event of an emergency. When the forced circulation technology of the EVEMP was applied, the non-refueling full-life micro reactor achieve an output power of 60 MWt, which is higher than that achievable via the natural circulation method (30 MWt). Accordingly, an optimized EVEMP for Micro URANUS with a flow rate of 4196 kg/s and developed pressure of 73 kPa under a working temperature of 250 ℃ was designed.

공공기관 에너지 효율등급 향상을 위한 적용 설계요소에 관한 연구 - 공공청사 리모델링시 패시브 디자인요소를 중심으로 - (An Architectural Study on the Improvement of Energy Efficiency of Public Institution - Focused on Public Office Buildings Remodeling of Passive Design Elements -)

  • 조정철;박재승
    • 한국실내디자인학회논문집
    • /
    • 제21권4호
    • /
    • pp.114-120
    • /
    • 2012
  • There are lots of buildings which were built before the Legislation on building energy rating system. Remodeling of the buildings would be required for an improvement of the building energy rating system was enforced by the government. In the Passive Building Design, Elements which will be used for the remodeling are Insulation, Window, External venetian blind, Heat exchanger. The Purpose of this study is to indicate a Method for the improvement of Energy saving by an analysis of Construction Cost, Cost Evaluation, Energy performance Efficiency in applied design elements. In this study, the remodeling of existing public buildings to improve energy efficiency rating was applied to extract the elements of design-specific energy performance, efficiency, and the application of the designs that has been analyzed. The results were as follows: applying the design-specific cost-effective investment that represents the economy (investment efficiency/%) surveyed the average insulation(7.0%), triple glazed windows(10.1%), double glazed windows(12.1%), external shading(24.5%), and Heat(77.2%) were analyzed in order to be more efficient. Analysis of the basis of information on the existing public buildings to improve energy efficiency rating for the remodeling depending on driving conditions at a degree of individual difference. The main effect, however, depending on economic investment, design elements, heat exchangers, external awning, double glazed windows, triple glazed windows, insulation, is recommended as review of the order shall be determined.

  • PDF

첨가제를 이용한 보일러 열교환기의 고온부식 방지기술 현황 (A Technical Review on the Protective Measures of High Temperature Corrosion of Boiler Heat Exchangers with Additives)

  • 김범종;류창국;이은도;김영두;이정우;송재헌
    • 청정기술
    • /
    • 제23권3호
    • /
    • pp.223-236
    • /
    • 2017
  • 기후변화 대응을 위한 청정 화력발전 기술의 일환으로 폐기물과 바이오매스를 중심으로 한 신재생연료의 이용이 크게 증가함에 따라 특히 고온 고압 스팀 생산이 필요한 발전용 보일러 열교환기의 고온부식(High temperature corrosion) 문제가 심각한 현안으로 대두되고 있다. 이러한 문제점은 저급연료에 포함된 염화알칼리 성분이 보일러 내 열교환기 중 표면온도가 가장 높은 과열기(Superheater) 또는 재열기(Reheater)에 점착된 후 염소에 의해 부식이 가속화되어 일어난다. 이를 해결하기 위해 설계 변경, 재료 개선, 연료 전처리 등의 고온부식 회피 방법과 함께 첨가제를 이용한 고온부식 방지 기술이 활용되고 있다. 본 연구에서는 보일러에서 고온부식 방지를 위한 다양한 접근 중 특히 첨가제를 이용한 연구개발 현황을 소개한다.