• 제목/요약/키워드: Heat density

Search Result 1,942, Processing Time 0.031 seconds

Effects of Drinking Ion Water on Performance, Egg Quality and Blood Biochemical Composition of Laying Hens under High Temperature Conditions (고온환경에서 이온수의 급수가 산란계의 생산성, 계란 품질 및 혈액성상에 미치는 영향)

  • Lim, Chun Ik;Rana, Md Masud;Li, Hong Long;Cho, Tae Hyun;Ryu, Kyeong Seon
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.121-126
    • /
    • 2020
  • This study was conducted to investigate the effect of drinking ion water on the performance, egg quality, and serum biochemical properties of laying hens in a high-temperature environment. A total of 180 laying hens with equal egg production rates were randomly divided into three treatments with five replicates. Treatments were applied from 24 to 27 weeks of age and included the supply of ion water (IW), tap water (TW), and cold water (CW). The results showed that the egg production rate, egg weight, and feed intake of hens were significantly (P<0.01) improved in the IW group compared with those in the TW group but did not differ from those in the CW group. Egg quality parameters such as albumen height, Haugh unit, and eggshell thickness were found to be higher in the IW than in the TW group (P<0.05); however, no significant differences were observed in comparison with the CW group. Serum Ca and P concentrations tended to increase (P<0.10) in the IW group, and serum high-density lipoprotein cholesterol and albumin levels were greater (P<0.05) in response to IW than those to TW. This study provides evidence that the supply of IW can relieve the high-temperature stress during the summer. In particular, because the improved effects of the IW were confirmed to be similar to those of CW, it shows potential as a method to manage the drinking water of hens in the summer season along with the supply of CW.

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.

Feed System Modeling of Railroad using Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 철도급전계통 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 2020
  • With the growing interest in fossil fuel depletion and environmental pollution, railroad cars operating in Korea are in progress as the conversion from diesel to electric vehicles expands. The photovoltaic system, which is applied as an example of the conversion of electric vehicles, is infinite and pollution-free, and can produce energy without generating hazards such as air pollution, noise, heat, and vibration, and maintain fuel transportation and power generation facilities. There is an advantage that is rarely needed. However, the amount of electricity produced depends on the amount of solar radiation by region, and the energy density is low due to the power generation of about 25㎡/ kWp, so a large installation area is required and the installation place has limited problems. In view of these problems, many studies have been applied to fuel cells in the railway field. In particular, the plan to link the fuel cell power generation system railroad power supply system must be linked to the power supply system that supplies power to the railroad, unlike solar and wind power. Therefore, it has a close relationship with railroad cars and the linkage method can vary greatly depending on the system topology. Therefore, in this paper, we study the validity through simulation modeling related to linkage analysis according to system topology.

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding (FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구)

  • Choi, Jae Ryung;Jung, Byung Mun;Choi, U Hyeok;Cho, Seung Chan;Park, Ka Hyun;Kim, Won-jung;Lee, Sang-Kwan;Lee, Sang Bok
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2015
  • Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

Surface reaction of $HfO_2$ etched in inductively coupled $BCl_3$ plasma ($BCl_3$ 유도결합 플라즈마를 이용하여 식각된 $HfO_2$ 박막의 표면 반응 연구)

  • Kim, Dong-Pyo;Um, Doo-Seunng;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.477-477
    • /
    • 2008
  • For more than three decades, the gate dielectrics in CMOS devices are $SiO_2$ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 urn and 2 urn or less), gate leakage current is increased and reliability of $SiO_2$ is reduced. Many metal oxides such as $TiO_2$, $Ta_2O_4$, $SrTiO_3$, $Al_2O_3$, $HfO_2$ and $ZrO_2$ have been challenged for memory devices. These materials posses relatively high dielectric constant, but $HfO_2$ and $Al_2O_3$ did not provide sufficient advantages over $SiO_2$ or $Si_3N_4$ because of reaction with Si substrate. Recently, $HfO_2$ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating $HfO_2$. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of $HfO_2$ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in $BCl_3$ based plasma to etch $HfO_2$ thin films. In this work, the samples of $HfO_2$ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of $BCl_3$/Ar were obtained 20% $BCl_3$/ 80% Ar. Over 20% $BCl_3$ addition, the etch rate of $HfO_2$ decreased. The etching rate of $HfO_2$ and selectivity of $HfO_2$ to Si were investigated with using in inductively coupled plasma etching system (ICP) and $BCl_3/Cl_2$/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for $HfO_2$ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of $HfO_2$ in $BCl_3/Cl_2$/Ar plasma was compared with surface of as-doped $HfO_2$ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

  • PDF

Produce of High Purity Tin from Spent Solder by Electro Refining (폐 솔더 잉곳으로부터 전해정련에 의한 고순도 주석 생산)

  • Lee, Ki-Woong;Kim, Hong-In;Ahn, Hyo-Jin;Ahn, Jae-Woo;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • The high pure tin production was conducted from crude-tin containing waste solder by electro-refining process. The electro-refining process maintained at 0.2V produced tin with purity of 99.98%, whereas a little increase of voltage to 0.3 V resulted tin purity of 99.92%. The high pure tin of 3N in the present process was produced by fixing the voltage at 0.3V. Considering the high pure tin production, the current density was maintained within $100-120A/m^2$ with current efficiency of 94%. Addition of sulfuric acid of 20 ~ 25 g/L to the electrolyte solution was performed in order to keep Pb (lead) concentration below 100 mg/L in the final tin product. The anode slime generated during electro refining process was analyzed by X-ray diffraction (XRD) study to understand the phases of impurities in it. It detected the presence of Cu and Ag in the slime as in the form of $Cu_6Sn_5$, $Ag_3Sn$, whereas Pb occurred as $PbSO_4$ compound.

Development of numerical model for estimating thermal environment of underground power conduit considering characteristics of backfill materials (되메움재 특성을 고려한 전력구 열환경 변화 예측 수치해석모델 개발)

  • Kim, Gyeonghun;Park, Sangwoo;Kim, Min-Ju;Lee, Dae-Soo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.121-141
    • /
    • 2017
  • The thermal analysis of an underground power conduit for electrical cables is essential to determine their current capacity with an increasing number of demands for high-voltage underground cables. The temperature rises around a buried cable, caused by excessive heat dissipation, may increase considerably the thermal resistance of the cables, leading to the danger of "thermal runaway" or damaging to insulators. It is a key design factor to develop the mechanism on thermal behavior of backfilling materials for underground power conduits. With a full-scale field test, a numerical model was developed to estimate the temperature change as well as the thermal resistance existing between an underground power conduit and backfill materials. In comparison with the field test, the numerical model for analyzing thermal behavior depending on density, moisture content and soil constituents is verified by the one-year-long field measurement.

The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application (태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

Development of Freezing Time Prediction Model and Thermo-physical Properties of Frozen Kimchi (김치 동결시의 물리적 특성 및 동결시간 예측 모델 개발)

  • 정진웅;김병삼;김종훈
    • Food Science and Preservation
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2003
  • This study was carried out to investigate the thermo-physical properties and design Freezing time prediction model from data of freezing test of Kimchi. Density of Kimchi were measured as 1001.9 ${\pm}$0.03 kg/㎥ at unfrozen state, 987.0 ${\pm}$0.07 kg/㎥ at frozen state and volume of the Kimchi expanded 4.67% at -l5$^{\circ}C$. Initial freezing point of Kimchi and seasoning were -4.0$^{\circ}C$ and -2.5$^{\circ}C$, respectively. Freezing ratio of Kimchi were estimated more than 50% at -5.0$^{\circ}C$, more than 75% at -l0$^{\circ}C$ and approximately 90% at -25$^{\circ}C$. To obtain equation for freezing time prediction of Kimchi, freezing time(Y) was regressed against the reciprocal( $X_3$) of difference of initial freezing point and freezing medium temperature, reciprocal( $X_4$) of surface heat transfer coefficient, the initial temperature( $X_1$) and thickness( $X_2$) of samples. As results of the multiple regression analysis, equations were obtained as follows. Y$_{kimchi}$=3.856 $X_1$+13982.8 $X_2$+8305.166 $X_3$+ 3559.181 $X_4$-639.189( $R^2$=0.9632). These equations shown better results than previous models, and the accuracy of its was very high as average absolute difference of about 10% in the difference between the fitted and experimental results.

Nano-crystallization Behavior and Optical Properties of Na2O-Nb2O5-TeO2Glasses (1) (Na2O-Nb2O5-TeO2계 유리의 광학적 성질과 나노-결정화거동 (1))

  • 김현규;류봉기;차재민;김병관;이재성
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1078-1084
    • /
    • 2003
  • In order to develop a new type of nonlinear optical materials or photocatlaysts, Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses were prepared using conventional melt quenching method, and the crystallization behaviors and optical properties of these glasses was investigated. The optical and physical properties for Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses are: refractive index, n=2.04$\pm$0.04; density, p (g/㎤)=4.87$\pm$0.58; optical energy band of the transmission cut-off wavelength, E$_{0}$ (eV)=3.14$\pm$0.04. The transparent glass ceramics consisting of the nanocrysatls were obtained when the Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glass was first heat-treated at 3$50^{\circ}C$ for 1 h and than at 40$0^{\circ}C$ for 1 h. A cubic crystalline phase consisting of the nano-crysatls transforms into a stable phase at temperature above 47$0^{\circ}C$ for 1 h.