BCl₃ 유도결합 플라즈마를 이용하여 식각된 HfO₂ 박막의 표면 반응 연구

김동표, 엄두승, 김창일 중앙대학교

Surface reaction of HfO2 etched in inductively coupled BCl3 plasma

Dong-Pyo Kim, Doo-Seunng Um and Chang-Il Kim Chung-Ang University

Abstract: For more than three decades, the gate dielectrics in CMOS devices are SiO₂ because of its blocking properties of current in insulated gate FET channels. As the dimensions of feature size have been scaled down (width and the thickness is reduced down to 50 nm and 2 nm or less), gate leakage current is increased and reliability of SiO₂ is reduced. Many metal oxides such as TiO₂, Ta₂O₄, SrTiO₃, Al₂O₃, HfO₂ and ZrO₂ have been challenged for memory devices. These materials posses relatively high dielectric constant, but HfO₂ and Al₂O₃ did not provide sufficient advantages over SiO₂ or Si₃N₄ because of reaction with Si substrate.

Recently, HfO₂ have been attracted attention because Hf forms the most stable oxide with the highest heat of formation. In addition, Hf can reduce the native oxide layer by creating HfO₂. However, new gate oxide candidates must satisfy a standard CMOS process. In order to fabricate high density memories with small feature size, the plasma etch process should be developed by well understanding and optimizing plasma behaviors. Therefore, it is necessary that the etch behavior of HfO₂ and plasma parameters are systematically investigated as functions of process parameters including gas mixing ratio, rf power, pressure and temperature to determine the mechanism of plasma induced damage. However, there is few studies on the the etch mechanism and the surface reactions in BCl₃ based plasma to etch HfO₂ thin films.

In this work, the samples of HfO₂ were prepared on Si wafer with using atomic layer deposition. In our previous work, the maximum etch rate of BCl₃/Ar were obtained 20% BCl₃/ 80% Ar. Over 20% BCl₃ addition, the etch rate of HfO₂ decreased. The etching rate of HfO₂ and selectivity of HfO₂ to Si were investigated with using in inductively coupled plasma etching system (ICP) and BCl₃/Cl₂/Ar plasma. The change of volume densities of radical and atoms were monitored with using optical emission spectroscopy analysis (OES). The variations of components of etched surfaces for HfO₂ was investigated with using x-ray photo electron spectroscopy (XPS). In order to investigate the accumulation of etch by products during etch process, the exposed surface of HfO₂ in BCl₃/Cl₂/Ar plasma was compared with surface of as-doped HfO₂ and all the surfaces of samples were examined with field emission scanning electron microscopy and atomic force microscope (AFM).

Key Words: HfO₂, High-k dielectrics, BCl₃/Cl₂/Ar, ICP