• Title/Summary/Keyword: Heat density

Search Result 1,942, Processing Time 0.027 seconds

Fluid Flow and Heat Transfer in the Fluidized Bed Heat Exchanger (순환 유동층 열교환기내 유체유동과 열전달)

  • 김원철;배성택;이병창;안수환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal Performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The Present work showed that the flow velocity range for Possible collision between the tube wall and the particles was higher with heavier density solid particles. in audition. the solid particle periodically hitting the tube wall broke the thermal boundary laver. and increased the rate of heat transfer.

Evaluation of the Characteristics of the Aluminum Alloy(AC8A) Casting Material by Heat Treatment(II) (AC8A 알루미늄 합금 주조재의 열처리에 의한 특성 평가(II))

  • Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-36
    • /
    • 2016
  • Aluminum alloys have been widely used in engine materials, cold & hot-water storage vessels and piping etc., Furthermore, the aluminum alloy of AC8A have been widely used in mold casting material of engine piston for various vehicles because of its properties of temperature, wear and corrosion resistance. Therefore, it is considered that evaluation of corrosion resistance as well as wear resistance of AC8A material is also important to improve its property and to prolong its lifetime. In previous paper, the effect of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 16, 24, and 36 hrs)heat treatments to corrosion resistance and hardness were investigated using electrochemical method. In this study, in order to examine completely the effect of the tempering hours to hardness variation and corrosion resistance, the results of solution($510^{\circ}C$:4hrs) and tempering($190^{\circ}C$: 2, 4, 8 and 12hrs)heat treatments to hardness and corrosion resistance were investigated using electrochemical method. The hardness decreased with solution heat treatment compared to mold casting condition, but its value increased with tempering heat treatment. Furthermore, the corrosion resistance increased with decreasing of the hardness, and decreased with increasing of the hardness reversely. And the tempering heat treatment temperature at $190^{\circ}C$ for 8 hrs exhibited the highest value of the hardness and also indicated the highest corrosion current density. However, the values of hardness and corrosion current density was again increasingly decreased with increasing of tempering hours than 8 hrs, Consequently, it is suggested that decision of the optimum. tempering hours is very important to improve the corrosion or wear resistance.

Analysis of Fire Characteristics based on the Thickness and Incident Heat Flux of Wood (합판류 목재의 두께별 입사열유속에 따른 연소특성 비교 연구)

  • Hwang, Sun-Woo;Park, Won-Hee;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.13-21
    • /
    • 2020
  • This study tested the wood used in building interiors; each type had various incident heat fluxes based on their thickness. The combustion characteristics measured were effective heat of combustion, heat release rate peak and arrival time, maximum average rate of heat emission, and piloted ignition temperature. The wood specimens used in the experiment were 4.8 to 18 mm thick. 25, 35, 50, and 60 kW/㎡ were applied to the incident heat flux that the wood specimens were exposed to. The wood specimens tested were two types of medium-density fiberboard (each with a different density), treated red pine, particle board, and plywood. A comprehensive comparison of different fire characteristics was conducted to analyze the fire patterns corresponding to each type of wood in this way, the risk of fire was studied. The risk of fire was particularly high for particle board. The results of quantifying the fire characteristics of the types of wood studied could function as important input data with which to calculate the fire load of composite combustibles.

Investigation of Heat Transfer in Microchannel with One-Side Heating Condition Using Numerical Analysis (수치 해석을 이용한 단일 마이크로채널의 단면 가열 조건의 열전달 특성에 관한 연구)

  • Choi, Chi-Woong;Huh, Cheol;Kim, Dong-Eok;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.986-993
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method far high density electronic devices. The cross-sectional shape of MEMS based microchannel heat sink is limited to triangular, trapezoidal, and rectangular due to their fabrication method. And heat is added to one side surface of heat source. Therefore, those specific conditions make some complexity of heat transfer in microchannel heat sink. Though many previous research of conjugate heat transfer in microchannel was conducted, most of them did not consider heat loss. In this study, numerical investigation of conjugate heat transfer in rectangular microchannel was conducted. The method of heat loss evaluation was verified numerically. Heat distribution was different for each wall of rectangular microchannel due to thermal conductivity and distance from heat source. However, the ratio of heat from each channel wall was correlated. Therefore, the effective area correction factor could be proposed to evaluate accurate heat flux in one side heating condition.

Effect of Laser Surface Hardening Factors on the Wear Resistance of Medium Carbon Low Alloy Steel Surface-hardened by Using CO2 Laser Technique (CO2 레이저 표면경화처리된 중탄소 저합금강의 내마모 특성에 미치는 레이저 표면경화 인자의 영향)

  • Park, K.U.;Roh, Y.S.;Han, Y.H.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.2
    • /
    • pp.122-132
    • /
    • 1992
  • This study has been performed to investigate into some effects of the power density and traverse speed of laser beam on the optical microstructure, hardness and wear characteristics of medium carbon low alloy steel treated by laser surface hardening technique. The results obtained from the experiment are summarized as follows : (1) Optical micrograph has shown that finer lath martensite is formed and the amount of undissolved complex carbides increases as the traverse speed increases under the condition of a given power density, whereas the coarsening of lath martensite and the reduction of undissolved complex carbides occur with increasing the power density at a given traverse speed. (2) Hardness measurements have revealed that as the traverse speed increases, hardness values of outermost surface layer more of less decrease under low power densities, but are uniformly distributed under high power densities, also showing that they are uniformly distributed at low traverse speeds and more or less decrease at high traverse speeds with increasing the power density. (3) The effective case depth has been found to decrease from 0.26 mm to 0.17 mm with increasing the traverse speed from 1.5 m/min to 3.0 m/min at a given power density of $25.48{\times}10^3w/cm^2$ and to increase from 0.20 mm to 0.36 mm with increasing the power density from $19.11{\times}10^3w/cm^2$ to $38.22{\times}10^3w/cm^2$ at a given traverse speed of 2.0 m/min. (4) Wear test has exhibited that the amount of weight loss of laser surface hardened specimen with respect to sliding distance at a given load increases with increasing traverse speed at a given power density and decreses with increasing power density at a given traverse speed.

  • PDF

Laminar Forced Convective Heat Transfer to Near-Critical Water in a Tube

  • Lee, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1756-1766
    • /
    • 2003
  • Numerical modeling is carried out to investigate forced convective heat transfer to near-critical water in developing laminar flow through a circular tube. Due to large variations of thermo-physical properties such as density, specific heat, viscosity, and thermal conductivity near thermodynamic critical point, heat transfer characteristics show quite different behavior compared with pure forced convection. With flow acceleration along the tube unusual behavior of heat transfer coefficient and friction factor occurs when the fluid enthalpy passes through pseudocritical point of pressure in the tube. There is also a transition behavior from liquid-like phase to gas-like phase in the developing region. Numerical results with constant heat flux boundary conditions are obtained for reduced pressures from 1.09 to 1.99. Graphical results for velocity, temperature, and heat transfer coefficient with Stanton number are presented and analyzed.

An Experimental Study on the Defrosting Behavior of a Fin-Tube Heat Exchanger

  • Lee, Kwan-Soo;Jhee, Sung
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.101-111
    • /
    • 1999
  • The effect of various conditions of frosting and defrosting on the defrosting behavior of a fin-tube heat exchanger has been examined experimentally. An electric heater is used for defrosting in a fin-tube heat exchanger. There are several local maxima in the water draining rate. The amount of residual water on the heat exchanger after completion of defrosting is kept constant due to surface tension on the heat exchanger. Without considering degradation of the thermal performance due to the frosting, the defrosting efficiency is improved with increasing amount of frost irrespective of the frosting condition. The defrosting behavior is affected by frosting density as well as frost accumulation, both of which vary with the experimental operating conditions. The heat loss to the surrounding air decreases, and melting and defrosting efficiencies show high values with decreasing heat input.

  • PDF

An Experimental Study on Heat Transfer Characteristics of Thermal Diode Type Enclosure Cavity (熱다이오식 밀폐공간의 熱傳達 特性에 關한 實驗的 硏究)

  • 장영근;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.12
    • /
    • pp.1073-1080
    • /
    • 2000
  • Thermal diode is a device which allows heat to be transferred in one direction by convection due to density difference of fluid ,and blocks heat flow in the opposite direction. It is simple in construction and low in cost. And so, it is used as heat collection system of solar energy. In order to acquire a basic design data, thermal diode heat collection system has been studied experimentally for flux Rayleigh numbers from $2\times10^8\;to\;8\times10^8$. The heat transfer rate of this system is shown 10~47% higher than that of other earlier research results. He correlation obtained in this study is Nu=0.0037(Ra^*)^{0.429}(d^*)^{0.05}\frac{(Lr)}{H}^{0.415}$.

  • PDF

Performance Comparison of Liquid-Cooling with Air-Cooling Heat Exchangers Designed for Telecommunication Equipment

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kang, Hoon;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.64-69
    • /
    • 2008
  • Electronic and telecommunication industries are constantly striving towards miniaturization of electronic devices. Miniaturization of chips creates extra space on PCBs that can be populated with additional components, which decreases the heat transfer surface area and generates very high heat flux. Even though an air-cooling technology for telecommunication equipment has been developed in accordance with rapid growth in electrical industry, it is confronted with the limitation of cooling capacity due to the rapid increase of heat density. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, air-cooling heat exchangers were tested to provide performance data for the comparison with the liquid-cooling heat exchangers. The liquid-cooling heat exchangers had twelve rectangular channels with different flow paths of 1, 2, and 12. Silicon rubber heaters were used to control the heat load to the heat exchangers. Heat input ranged from 293 to 800W, and inlet temperatures of working fluid varied from 15 to $27^{\circ}C$. The heat transfer coefficients were strongly affected by flow conditions. All liquid-cooling heat exchangers showed higher cooling performance than the air-cooling heat exchanger. The heat exchanger with 2-paths could provide more controllability on the maximum temperature than the others.

Comparative Analysis of Heat Sink and Adhesion Properties of Thermal Conductive Particles for Sheet Adhesive (열전도성 입자를 활용한 시트용 점착제의 점착 특성과 방열특성 연구)

  • Kim, Yeong Su;Park, Sang Ha;Choi, Jeong Woo;Kong, Lee Seong;Yun, Gwan Han;Min, Byung Gil;Lee, Seung Han
    • Textile Coloration and Finishing
    • /
    • v.28 no.1
    • /
    • pp.48-56
    • /
    • 2016
  • Improvement of heat sink technology related to the continuous implementation performance and extension of device-life in circumstance of easy heating and more compact space has been becoming more important issue as multi-functional integration and miniaturization trend of electronic gadgets and products has been generalized. In this study, it purposed to minimize of decline of the heat diffusivity by gluing polymer through compounding of inorganic particles which have thermal conductive properties. We used NH-9300 as base resin and used inorganic fillers such as silicon carbide(SiC), aluminum nitride(AlN), and boron nitride(BN) to improve heat diffusivity. After making film which was made from 100 part of acrylic resin mixed hardener(1.0 part more or less) with inorganic particles. The film was matured at $80^{\circ}C$ for 24h. Diffusivity were tested according to sorts of particles and density of particles as well as size and structure of particle to improve the effect of heat sink in view of morphology assessing diffusivity by LFA(Netzsch/LFA 447 Nano Flash) and adhesion strength by UTM(Universal Testing Machine). The correlation between diffusivity of pure inorganic particles and composite as well as the relation between density and morphology of inorganic particles has been studied. The study related morphology showed that globular type had superior diffusivity at low density of 25% but on the contarary globular type was inferior to non-globular type at high density of 80%.