• Title/Summary/Keyword: Heat Treatment Temperature

Search Result 3,065, Processing Time 0.03 seconds

Temperature Prediction of Al6061 Tube in Cryogenic Heat Treatment by CFD Analysis and Experimental Verification (CFD 해석을 이용한 Al6061 튜브의 극저온 열처리 시 소재의 온도 예측 및 실험적 검증)

  • Hwang, Seong-Jun;Ko, Dae-Hoon;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1210-1216
    • /
    • 2011
  • The purpose of this study is to establish the analysis method for prediction of temperature during cryogenic heat treatment. Experimental cryogenic heat treatment is conducted to observe the phenomena such as boiling of fluid, ice layer on the material surface and to measure the temperature distribution of Al6061 tube. The CFD analysis considering the observed phenomena in the experiment is performed to predict the temperature distribution and convection heat transfer coefficient at each stage of cryogenic heat treatment, in which the boiling of fluid is considered as the multi-phase condition of vapour and liquid. The formation of ice layer on the tube surface is also modeled between material and fluid. The predicted results are in good agreement with the experimental ones. From the results, it is shown that the analysis method can predict the temperature distribution and convection heat transfer coefficient during cryogenic heat treatment.

Effect of Heat Treatment on the Surface Machined by W-EDM (고온 열처리가 와이어 컷 가공면에 미치는 영향)

  • Choi, K.K.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.539-543
    • /
    • 2006
  • Experimental studies are carried out in order to investigate the effects of heat treatment on the surface machined by W-EDM. In this work, two ways of heat treatment after W-EDM are considered. As a comparison, the machined surface by a traditional method such as milling/grinding is also considered. Thereby, specimens are prepared by four different machining methods. Those are (1) milling and then grinding, (2) wire-cut electric discharge machining (W-EDM), and (3) low temperature heat treatment or (4) high temperature heat treatment after W-EDM. The resulting surface roughness are measured and the changes of surface microstructures are investigated using the scanning electron microscope (SEM) with energy dispersive X-ray spectrometer (EDS). In general, heat treatment after W-EDM result in smoother surface and better chemical composition at the machined surface. Especially, high temperature tempering could remove defects in the thermally affected zone, which cause an overall deterioration of the surface machined by W-EDM.

Fabrication of Hydroxyapatite-coated Zirconia by Room Temperature Spray Process and Microstructural Change by Heat-treatment (상온 분사법에 의한 수산화아파타이트 코팅 지르코니아의 제조 및 미세구조에 미치는 열처리 효과)

  • Lee, Jong Kook;Eum, Sangcheol;Kim, Jaehong;Jang, Woo Yang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • Hydroxyapatite coatings were fabricated by a room temperature spray method on zirconia substrates and the influence of heat-treatment on their microstructure was also investigated. Phase composition of coated hydroxyapatite films was similar to the starting powder, but the grain size of hydroxyapatite particles was reduced to the size of nano-scale about 100 nm. Grain size, particle compactness, and adhesiveness to zirconia of hydroxyapatite coatings were increased with heat-treatment temperature, but some of cracks by heat-treatment above $1100^{\circ}C$ were initiated between hydroxyapatite coatings and zirconia substrate. Heat-treated hydroxyapatite layers show the dissolution in SBF solution for 5 days. Hydroxyapatite-coated specimen heat-treated at $1100^{\circ}C$ for 1 h has a good biocompatibility, which specimen induced the nanocrystalline hydroxyapatite precipitates on the coating surface by the immersion in SBF solution for 5 days.

Effect of Heat Treatment on the Mechanical Properties of Carbon Fiber (탄소섬유의 기계적 특성에 대한 열처리의 영향)

  • Kim, Bu-An;Moon, Chang-Kwon;Choi, Young-Min
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.13-19
    • /
    • 2017
  • The effect of heat treatment temperature (HTT) on the mechanical properties of polyacrylonitrile (PAN)-based carbon fiber had been investigated. The heat treatment on the carbon fiber was conducted under high vacuum atmosphere of $10^{-6}mmHg$, and the range of temperature of $1,000^{\circ}C$ to $2,000^{\circ}C$. As a results, The tensile strength of carbon fiber and carbon fiber composites showed increasing tendency with the rise of heat treatment temperature. And, the shape parameter of Weibull distribution for the strength of carbon single fiber showed an increasing trend until $1,800^{\circ}C$. But the shape parameter of Weibull distribution for the strength of carbon fiber composites showed no clear tendency with the rise of heat treatment temperature. The cause of reinforcement effect of the carbon fiber by the heat treatment was regarded as the carbonization of carbon single fiber.

The Study on the Effect of Alloying Elements(V,Ti) and Heat Treatment on the Mechanical Properties in Chromium Cast Iron (크롬주철의 기계적 성질에 미치는 합금원소(V,Ti)와 열처리의 영향에 관한 연구)

  • Kim, Sug-Won;Kim, Dong-Keon;Lee, Eui-Kwoon;Jang, Ho-Yeal
    • Journal of Korea Foundry Society
    • /
    • v.12 no.6
    • /
    • pp.450-457
    • /
    • 1992
  • The study aims to investigate the influence of alloying elements(V,Ti) and heat treatment on the mechanical properties in hypo-eutectic chromium cast iron. Before heat treatment, all of the specimen were fully annealed(950$^{\circ}C{\times}5Hr$) to homogenize their structures. The influence of heat treatment and alloying elements(V,Ti) on hardness, retained austenite volume, and charpy impact energy as well as tensile strength of the specimen was tested systematically. Retained austenite decreased with the increase of V and Ti, but incresed with the increase of number of cycles. The impact energy decreased, and hardness and tensile strength increased with the increase of alloying elements (V,Ti) and the decrease of the number of cycles. The hardness and tensile strength increased, but impact energy decreased with the increase of V and Ti elements and the temperature of destabillization heat treatment. After the destabillization heat treatment at the same temperature, the impact energy is increased, while hardness and tensile strength decreased as the increase of tempering temperature. Retained austenite increased with increase of destabilizatoin heat treatment temperature, while decrease with the increase of tempering temperature.

  • PDF

Effect of Heat-treatment on the Electrical Properties of Polyurethane Resin (열처리조건이 폴리우레탄수지의 전기적 특성에 미치는 영향에 관한 연구)

  • Cho, Jung-Soo;Kwak, Young-Soon;Lee, Jong-Ho;Kwak, Byung-Ku
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.293-295
    • /
    • 1987
  • This paper deals with the dielectric properties dielectric breakdown strength and mechanical tensile properties according to heat - treatment condition of polyurethane resin. This resin is heat - treated over a range of temperature from $50^{\circ}C$ to $150^{\circ}C$. It is shown that the dielectric dissipation factor decreases with increase of heat - treatment temperature of the sample exept for the sample heat - treated at $150^{\circ}C$. The maximum dielectric breakdown strength is appeared for the sample heat - treated for 10 hours at $100^{\circ}C$, after curing for 24 hours at room temperature. The optimal heat - treatment condition in the view point of the electrical and mechanical properties is appeared for the sample heat - treated for 10 hours at $100^{\circ}C$, after curing for 24 hours at room temperature.

  • PDF

Heat Treatment of Superalloys for High Temperature Applications (고온구조용 초내열합금 열처리)

  • Park, Nho-Kwang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 2003
  • Superalloys which can be devided into three categohes, i.e. Ni-base, Co-base, and Fe-base alloys are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, its chemistry and processing parameters need to be carefully designed. In this review, current state-of-the art in the superalloy technologies is described with special attention to the heat-treatment for the control of the microstructures and mechanical properties.

Effects of Heat Treatment on the Nutritional Quality of Milk: II. Destruction of Microorganisms in Milk by Heat Treatment (우유의 열처리가 우유품질과 영양가에 미치는 영향: II. 열처리에 의한 우유의 미생물 사멸효과)

  • Kim, Kwang-Hyun;Park, Dae Eun;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.55-72
    • /
    • 2017
  • The second article of 'Effects of heat treatment on the nutritional quality of milk,' titled 'Destruction of microorganisms in milk by heat treatment' and authored by Dr. Seong Kwan Cha, who worked at the Korea Food Research Institute, covers the heat-stable microorganisms that exist in milk after pasteurization. The article focusses on the microbiological quality of raw milk and market milk following heat treatment, and is divided into four sub-topics: microbiological quality of raw milk, survey and measurement of microorganisms killed in raw milk, effect on psychrophilic and mesophilic microorganisms, and effect of heat treatment methods on thermoduric microorganisms. Bacillus spp. and Clostridium spp. are sporeforming gram-positive organisms commonly found in soil, vegetables, grains, and raw and pasteurized milk that can survive most food processing methods. Since spores cannot be inactivated by LTLT (low temperature long time) or HTST (high temperature short time) milk pasteurization methods, they are often responsible for food poisoning. However, UHT (ultra high temperature) processing completely kills the spores in raw milk by heating it to temperatures above $130^{\circ}C$ for a few seconds, and thus, the UHT method is popularly used for milk processing worldwide.

Effect of Heat Treatment Environment on the Microstructure and Properties of Kinetic Sprayed Tantalum Coating Layer (Kinetic Spray 공정으로 제조된 탄탈륨 코팅층의 열처리 분위기에 따른 미세조직 및 물성)

  • Lee, Ji-Hye;Kim, Hyung-Jun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • The effect of heat treatment environment on the microstructure and properties of tantalum coating layer manufactured by kinetic spraying was examined. Heat treatments are conducted for one hour at $800^{\circ}C$, $900^{\circ}C$, and $1000^{\circ}C$ in two different environments of vacuum and Ar gas. Evaluation of microstructure and physical properties are conducted. High density ${\alpha}$-tantalum single phase coating layer with a porosity of 0.04% and hardness of 550 Hv can be obtained. As heat treatment temperature increases, porosity identically decreases regardless of heat treatment environment (vacuum and Ar gas). Hardness of heat treated coating layer especially in Ar gas environment deceases from 550 Hv to 490 Hv with increasing heat treatment temperature. That in vacuum environment deceases from 550 Hv to 530 Hv. The boundary between particles became vague as heat treatment temperature increases. Oxygen distribution of tantalum coating layer is minute after heat treatment in vacuum environment than Ar gas environment.

Effects of Heat Treatment Temperature and Cooling Method on Microstructure and Hardness of Cu-22Sn alloy (열처리 온도 및 냉각방법이 Cu-22Sn합금의 미세조직 및 경도변화에 미치는 영향)

  • Jeong, Museob;Shin, Ari;Han, Jun Hyun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.104-110
    • /
    • 2018
  • The effects of heat treatment time and cooling method on microstructure and mechanical property of Cu-22wt%Sn alloy were discussed. ${\alpha}+{\delta}$ mixed phase structure was obtained in air-cooled specimens after heat treatment at 775, 750, and $700^{\circ}C$ for 1 hour. On the other hand, in water-cooled specimens, ${\alpha}+{\beta}^{\prime}$ martensite mixed phase was obtained. In the case of water-cooled specimens, the hardness value decreased with decreasing heat treatment temperature because the volume fraction of ${\alpha}$ phase with low hardness value increased as the heat treatment temperature decreased. In water-cooled specimen after heat treatment at $600^{\circ}C$, ${\gamma}^{\prime}$ martensite was formed instead of ${\beta}^{\prime}$ martensite. The hardness value of ${\gamma}^{\prime}$ martensite was lower than those of ${\beta}^{\prime}$ and ${\delta}$ phases.