• 제목/요약/키워드: Heat Treatment T6

검색결과 292건 처리시간 0.021초

Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석 (Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy)

  • 김찬규;조영태;정윤교;강신현
    • Journal of Welding and Joining
    • /
    • 제34권4호
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

용탕단조 공정을 응용한 액상이 제거된 Al7075 레오로지 소재의 T6 열처리 후 기계적 특성 (The Mechanical Property of Al7075 Rheology Material with Heat Treatment T6 to Eliminate Liquid Phase)

  • 강성식;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.150-153
    • /
    • 2007
  • Apply electromagnetic stirring system to making rheology slurry of Al7075. This experiment has important element which is the relation between solid fraction percent and melt temperature of Al7075. The rheology slurry of Al7075 eliminated liquid phase to include alloying element of copper and zinc by squeeze casting process. In result the most structure was composed entirely of globular primary $\alpha$. Used this material for this study. This study made a comparison of mechanical property according to heat treatment T6 at each melt temperature ($619^{\circ}C$ and $615^{\circ}C$). The microstructure and component are observed how heat treatment T6 weight with the mechanical property by SEM-EDS.

  • PDF

T6 열처리 및 저온 장시간 등온 시효한 Mg-Al 합금의 경도 및 진동감쇠능 비교 (Comparison of Hardness and Damping Capacities of Mg-Al Alloy Subjected to T6 Heat Treatment and Low Temperature Long Term Isothermal Aging)

  • 전중환
    • 열처리공학회지
    • /
    • 제36권5호
    • /
    • pp.277-284
    • /
    • 2023
  • Hardness and damping characteristics of fine discontinuous precipitates (DPs) microstructure generated by low temperature long term isothermal aging were investigated in comparison with those of T6 heat-treated microstructure composed of DPs and continuous precipitates (CPs) in Mg-9%Al alloy. In this study, T6 and fine DPs microstructures were obtained by isothermal aging at 453 K for 24 h and at 413 K for 336 h, respectively, after solution treatment at 693 K for 24 h. The DPs microstructure exhibited higher hardness than the T6 microstructure, which is related to the lower (α + β) interlamellar spacing of the DPs. The DPs microstructure possessed better damping capacity than the T6 microstructure in the strain-amplitude independent region, whereas in the strain-amplitude dependent region, the reverse behavior was observed. The damping tendencies depending on strain-amplitude were discussed based on the microstructural features of the T6 and DPs microstructures.

고진공 고압 다이캐스팅으로 제조된 AA365 합금의 미세조직과 기계적 특성에 미치는 T6 열처리의 영향 (Effect of T6 heat treatment on the microstructure and mechanical properties of AA365 alloy fabricated by vacuum-assisted high pressure die casting)

  • 전준협;손승배;이석재;정재길
    • 열처리공학회지
    • /
    • 제37권3호
    • /
    • pp.121-127
    • /
    • 2024
  • We investigate the effect of T6 heat treatment on the microstructure and mechanical properties of AA365 (Al-10.3Si-0.37Mg-0.6Mn-0.11Fe, wt.%) alloy fabricated by vacuum-assisted high pressure die casting by means of thermodynamic calculation, X-ray diffraction, scanning and transmission electron microscopy, and tensile tests. The as-cast alloy consists of primary Al (with dendrite arm spacing of 10~15 ㎛), needle-like eutectic Si, and blocky α-AlFeMnSi phases. The solution treatment at 490 ℃ induces the spheroidization of eutectic Si and increase in the fraction of eutectic Si and α-AlFeMnSi phases. While as-cast alloy does not contain nano-sized precipitates, the T6-treated alloy contains fine β' and β' precipitates less than 20 nm that formed during aging at 190℃. T6 heat treatment improves the yield strength from 165 to 186 MPa due to the strengthening effect of β' and β' precipitates. However, the β' and β' precipitates reduce the strain hardening rate and accelerate the necking phenomenon, degrading the tensile strength (from 290 to 244 MPa) and fracture elongation (from 6.6 to 5.0%). Fractography reveals that the coarse α-AlFeMnSi and eutectic Si phases act as crack sites in both the as-cast and T6 treated alloys.

열처리한 Mg-Nd 합금의 진동감쇠능 (Damping Capacity of Heat-Treated Mg-Nd Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제26권4호
    • /
    • pp.185-190
    • /
    • 2013
  • Influence of solution treatment (T4) and peak-aging (T6) on damping capacity was investigated in permanent-mold cast Mg-3%Nd alloy. In as-cast state, the microstructure was characterized by eutectic $Mg_{12}Nd$ intermetallic phase network in the intergranular region. T4 treatment resulted in a dissolution of the eutectic particles, but small amount of the particles still remained in the microstructure. After T6 treatment, nano-sized ${\beta}^{\prime}(Mg_{12}Nd)$ particles were precipitated within the matrix. T4 microstructure showed higher damping capacity than as-cast and T6 ones. In view of the microstructural features, this may well be associated with the dissolution of second-phase particles which play a role in pinning the dislocations acting as a damping source.

EFFECT OF T6 HEAT TREATMENT ON THE SCRATCH WEAR BEHAVIOR OF EXTRUDED Al-12WT.%Si ALLOY

  • YEON-JI KANG;JONG-HO KIM;JONG-IL HWANG;KEE-AHN LEE
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.617-622
    • /
    • 2019
  • This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10-1 mm3 and 7.8×10-2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.

AZ91-CaO 합금의 미세조직과 인장 특성에 미치는 열처리의 영향 (Effect of Heat Treatment on Microstructure and Tensile Properties of AZ91-CaO Alloy)

  • 전중환
    • 열처리공학회지
    • /
    • 제25권4호
    • /
    • pp.190-195
    • /
    • 2012
  • This study aims to investigate and compare the microstructures and room temperature tensile properties for AZ91 and ECO-AZ91 (AZ91+0.3%CaO) alloys in as-cast, T4 and T6 states, respectively. In as-cast state, the ECO-AZ91 alloy has finer microstructure than the AZ91 alloy. The AZ91 alloy exhibits greater ductility, while YS and UTS are inferior to those of the ECO-AZ91 alloy. After T4 treatment, most of ${\beta}$ compounds disappear in the AZ91 alloy, whereas ${\beta}$ phase is still observed in the ECO-AZ91 alloy due to its enhanced thermal stability, resulting in lower values of ductility and UTS. In T6 state, YS and UTS are better in the ECO-AZ91 alloy.

Al6061압출재를 이용한 온간액압성형품의 성형성 및 물성에 미치는 열처리조건의 영향 (Effect of Heat Treatment Conditions on Formability and Property of Warm Hydroformed Parts for Al 6061 Extruded Tube)

  • 이혜경;권승오;장정환;이영선;문영훈
    • 열처리공학회지
    • /
    • 제20권4호
    • /
    • pp.181-186
    • /
    • 2007
  • Effect of heat treatment conditions on formability and property of warm hydroformed parts for Al 6061 extruded tubes was investigated in this study. For the investigation, as-extruded, fully annealed and T6-treated Al 6061 seamless tubes were prepared. To evaluate the warm hydroformability, uni-axial tensile test and free bulge test were performed at various pre- and post-heat treatment conditions. And the tensile test specimens were obtained from hexagonal prototype hydroformed parts at $250^{\circ}C$. As a result, hydroformability of fully annealed tube is 25% higher than that of extruded tube. The tensile strength and strain of hydroformed part reach to 330 MPa and 12%, respectively, when the part was T6 treated after warm hydroforming. However, the hydroformability of T6 pre-treated tube is relatively low due to the decreased elongation, 8%.

가공경화를 이용한 고강도 Al 6056 볼트의 생산 공정설계 (Manufacturing Process Design of High Strength Al 6056 Bolts by Strain Hardening Effect)

  • 박종수;김유빈;김승우;김하성;안규희;박정섭;강종훈
    • 소성∙가공
    • /
    • 제30권4호
    • /
    • pp.165-171
    • /
    • 2021
  • This study was conducted on the manufacturing method of high-strength aluminum bolts. We obtained the displacement-load information by tensile test of the Al 6056 raw material and the T6 heat-treated material and calculated the precise flow stress and fracture limit using repetitive finite element analysis for before and after heat treatment. We designed a multi-stage forging process for T6 heat-treated material, and calculated that the accumulated damage value does not exceed fracture limits by finite element method. We produced the prototype forgings without any harmful defects such as cracks and folding occurring. Bolts made of T6 heat treated material show 9.6%higher tensile strength than T6 heat treated material after wire drawing.