DOI QR코드

DOI QR Code

Damping Capacity of Heat-Treated Mg-Nd Alloy

열처리한 Mg-Nd 합금의 진동감쇠능

  • Jun, Joong-Hwan (Advanced Fusion Process R&D Group, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 융합신공정연구그룹)
  • Received : 2013.06.07
  • Accepted : 2013.06.28
  • Published : 2013.07.30

Abstract

Influence of solution treatment (T4) and peak-aging (T6) on damping capacity was investigated in permanent-mold cast Mg-3%Nd alloy. In as-cast state, the microstructure was characterized by eutectic $Mg_{12}Nd$ intermetallic phase network in the intergranular region. T4 treatment resulted in a dissolution of the eutectic particles, but small amount of the particles still remained in the microstructure. After T6 treatment, nano-sized ${\beta}^{\prime}(Mg_{12}Nd)$ particles were precipitated within the matrix. T4 microstructure showed higher damping capacity than as-cast and T6 ones. In view of the microstructural features, this may well be associated with the dissolution of second-phase particles which play a role in pinning the dislocations acting as a damping source.

Keywords

References

  1. J. Zhang, Z. Leng, M. Zhang, J. Meng and R, Wu : J. Alloys Compd., 509 (2011) 1069. https://doi.org/10.1016/j.jallcom.2010.09.185
  2. M. Yang and F. Pan : Mater. Sci. Eng. A, 525 (2009) 112. https://doi.org/10.1016/j.msea.2009.06.040
  3. M. Kannan, W. Diezel, C. Blawert, A. Atrens and P. Lyon : Mater. Sci. Eng. A, 480 (2008) 529. https://doi.org/10.1016/j.msea.2007.07.070
  4. G. Riontino, M. Massazza, D. Lussana, P. Mengucci, G. Barucca and R. Ferragut : Mater. Sci. Eng. A, 494 (2008) 445. https://doi.org/10.1016/j.msea.2008.04.043
  5. H. Beladi and M. R. Barnett : Mater. Sci. Eng. A, 452-453 (2007) 306. https://doi.org/10.1016/j.msea.2006.10.125
  6. Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y. M. Zhu, J. F. Nie and Y. Wang : Acta Mater., 60 (2012) 4819. https://doi.org/10.1016/j.actamat.2012.05.013
  7. S. M. He, X. Q. Zeng, L. M. Peng, X. Gao, J. F. Nie and W. J. Ding : J. Alloys Compd., 421 (2006) 309. https://doi.org/10.1016/j.jallcom.2005.11.046
  8. J. F. Nie and B. C. Muddle : Acta Mater., 48 (2000) 1691. https://doi.org/10.1016/S1359-6454(00)00013-6
  9. S. M. Zhu and J. F. Nie : Scripta Mater., 50 (2004) 51. https://doi.org/10.1016/j.scriptamat.2003.09.039
  10. R. Xin, B. Song, K. Zeng, G. Huang and Q. Liu : Mater. Des., 34 (2012) 384. https://doi.org/10.1016/j.matdes.2011.08.043
  11. J. Yan, Y. Sun, F. Xue, S. Xue, Y. Xiao, W. Tao : Mater. Sci. Eng. A, 524 (2009) 102. https://doi.org/10.1016/j.msea.2009.06.008
  12. S. M. Zhu, M. A. Gibson, M. A. Easton and J. F. Nie : Scripta Mater., 63 (2010) 698. https://doi.org/10.1016/j.scriptamat.2010.02.005
  13. X. Zhang, Z. Wang, G. Yuan and Y. Xue : Mater. Sci. Eng. B, 177 (2012) 1113. https://doi.org/10.1016/j.mseb.2012.05.020
  14. J. F. Jie, X. Gao and S. M. Zhu : Scripta Mater., 53 (2005) 1049. https://doi.org/10.1016/j.scriptamat.2005.07.004
  15. X. Y. Fang, D. Q. Yi, J. F. Nie, X. J. Zhang, B. Wang and L. R. Xiao : J. Alloys Compd., 470 (2009) 311. https://doi.org/10.1016/j.jallcom.2008.02.069
  16. A. Riviere : J. Alloys Compd., 355 (2003) 201. https://doi.org/10.1016/S0925-8388(03)00287-1
  17. Q. Peng, J. Wang, Y. Wu and L. Wang : Mater. Sci. Eng. A, 433 (2006) 133. https://doi.org/10.1016/j.msea.2006.06.043
  18. S. Gorsse, C. R. Hutchinson, B. Chevalier and J. F. Nie : J. Alloys Compd., 392 (2005) 253. https://doi.org/10.1016/j.jallcom.2004.09.040
  19. F. Penghuai, P. Liming, J. Haiyan, C. Jianwei and Z. Chunquan : Mater. Sci. Eng. A, 486 (2008) 183. https://doi.org/10.1016/j.msea.2007.08.064
  20. A. Granato and K. Lucke : J. Appl. Phys., 27 (1956) 583. https://doi.org/10.1063/1.1722436
  21. A. Granato and K. Lucke : J. Appl. Phys., 27 (1956) 789. https://doi.org/10.1063/1.1722485
  22. Z. Zhang, X. Zeng and W. Ding : Mater. Sci. Eng. A, 392 (2005) 150. https://doi.org/10.1016/j.msea.2004.09.056