• Title/Summary/Keyword: Mg-Nd alloy

Search Result 32, Processing Time 0.028 seconds

Charge-discharge Characteristic of the Mg-Ni Hydrogen Storage Alloy System (MgNi계 수소흡장합금의 충방전특성)

  • Oh, Myung-Hark;Chung, Won-Sub;Kim, In-Gon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.177-184
    • /
    • 1999
  • The charge-discharge characteristics of the $Mg_2Ni-x$ wt.%Nd (x = 0~3) electrodes were investigated. The electrodes were prepared by the mechanical grinding of the induction-melted $Mg_2Ni$ alloy powders with Ni and/or Nd using planetary ball mill apparatus. The discharge capacity of the $Mg_2Ni$ alloy increased with the increase in the nickel content. The electrode possessing 100 wt.% nickel powder showed the initial capacity of 760 mAh/g and the capacity decay with the cycle number was less than that of the 55 wt.% nickel powder. The Nd was added to this composition. It was found that the $Mg_2Ni-100$ wt.%Ni -0.2 wt.%Nd alloy showed an excellent charge-discharge cycle characteristics compared with the other reported Mg-Ni alloy system. The discharge capacity was 400 mAh/g after 70 cycles. Such an improved cycle life seems to be attributed to the improvement in the corrosion characteristics of the alloy. The anodic polarization curve of the $Mg_2Ni-100$ wt.%Ni-0.2 wt.%Nd alloy exhibited better passivating behavior than that of the $Mg_2Ni-100$ wt.%Ni.

  • PDF

Damping Capacity of Heat-Treated Mg-Nd Alloy (열처리한 Mg-Nd 합금의 진동감쇠능)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.4
    • /
    • pp.185-190
    • /
    • 2013
  • Influence of solution treatment (T4) and peak-aging (T6) on damping capacity was investigated in permanent-mold cast Mg-3%Nd alloy. In as-cast state, the microstructure was characterized by eutectic $Mg_{12}Nd$ intermetallic phase network in the intergranular region. T4 treatment resulted in a dissolution of the eutectic particles, but small amount of the particles still remained in the microstructure. After T6 treatment, nano-sized ${\beta}^{\prime}(Mg_{12}Nd)$ particles were precipitated within the matrix. T4 microstructure showed higher damping capacity than as-cast and T6 ones. In view of the microstructural features, this may well be associated with the dissolution of second-phase particles which play a role in pinning the dislocations acting as a damping source.

Effect of Aging Treatment on the Tensile Properties of Mg-Nd-Y-Zr-Zn Casting Alloys (Mg-Nd-Y-Zr-Zn 주조합금의 인장특성에 미치는 시효처리의 영향)

  • Kim, Hyun-Sik;Ye, Dea-Hee;Kang, Min-Cheol;Kim, In-Bea
    • Korean Journal of Materials Research
    • /
    • v.18 no.5
    • /
    • pp.266-271
    • /
    • 2008
  • Magnesium alloys are alloyed with rare earth elements (Re, Ca, Sr) due to the limited use of magnesium in high-temperature conditions. In this study, the influences of Zr and Zn on the aging behavior of a Mg-Nd-Y alloy were investigated. magnesium alloys containing R.E elements require aging treatments Specifically, Nd, Y and Zr are commonly used for high-temperature magnesium alloys. Various aging treatments were conducted at temperatures of 200, 250 and $300^{\circ}C$ for 0.5, 1, 3, 6, and 10 hours in order to examine the microstructural changes and mechanical properties at a high temperature ($150^{\circ}C$). Hardness and high-temperature ($150^{\circ}C$) tensile tests were carried out under various aging conditions in order to investigate the effects of an aging treatment on the mechanical properties of a Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy. The maximum hardness was 67Hv; this was achieved after aging at $250^{\circ}C$ for 3 hours. The maximum tensile, yield strength and elongation at $150^{\circ}C$ were 237MPa, 145MPa and 13.6%, respectively, at $250^{\circ}C$ for 3 hours. The strengths of the Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy increased as the aging time increased to 3 hours at $250^{\circ}C$ This is attributed to the precipitation of a Nd-rich phase, a Zr-rich phase and $Mg_3Y_2Zn_3$.

High Temperature Creep Strength of Mg-Nd-Zr-Zn Alloy in Sand Castings (사형주조한 Mg-Nd-Zr-Zn합금의 고온 크리이프강도)

  • Kang, Dae-Min;Park, Kyung-Do;Park, Ji-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.83-88
    • /
    • 2011
  • Magnesium alloys have been focussed for the applications for lightweight of vehicle and electronics due to their high strength, low specific density and good damping capacity. This paper deals with the creep strength of Mg-Nd-Zr-Zn alloy. For the alloy, pure magnesium(99.9%) was melt with atmosphere of $0.3%SF_6$ and $25%CO_2$. After melting, 0.3% of zinc was inserted to stir for 10min at elevated temperature of $770^{\circ}C$. Master alloys of Mg-15%Nd and Mg-15%Zr were stirred in furnace. The creep tests were performed to obtain creep rate and rupture in the temperature range of 200 to $220^{\circ}C$ and 280 to $310^{\circ}C$ at an applied stress of 156 to 172MPa and 78 to 94MPa, respectively. The deformation mechanism was predicted dislocation climb from measured apparent activation energy and stress exponent. Also the increaser the temperature and stress the lower the stress exponent and activation energy. Finally, LMP parameter gives good information for the predicted creep rupture life.

Effect of loading direction on the low cycle fatigue behavior of rolled AZ31 Mg alloy (AZ31 Mg 합금 압연 판재에서 하중방향에 따른 저주기 피로특성)

  • Park, S.H.;Hong, S.G.;Lee, B.H.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.77-80
    • /
    • 2008
  • Low-cycle fatigue (LCF) tests were carried out to investigate the effect of loading direction on the cyclic deformation behavior and fatigue resistance of rolled AZ31 magnesium alloy. The as-received alloy showed a strong basal texture indicating that the most of basal planes of hexagonal close-packed structure were located parallel to the rolling direction. Two types of specimens whose loading directions were oriented parallel (RD) and vertical (ND) to the rolling direction. respectively, were used for the comparison. It was found that RD specimens yielded at much lower stresses during compression, while vice versa for the ND specimens, which was mainly attributed to the formation of primary twins. This anisotropic deformation behavior resulted in the different mean stresses during the cycling of RD and ND specimens, affecting the fatigue resistance of two specimens. The ND specimen showed a superior fatigue resistance as compared to the RD specimen under strain-controlled condition.

  • PDF

Mechanism of Crack Formation in Pulse Nd:YAG Laser Spot Welding of Al Alloys (Al합금 펄스 Nd:YAG 레이저 점 용접부의 균열 발생기구)

  • 하용수;조창현;강정윤;김종도;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • This study was performed to investigate types and formation mechanism of cracks in two Al alloy welds, A5083 and A7N01 spot-welded by pulse Nd : YAG laser, using SEM, EPMA and Micro-XRD. In the weld zone, three types of crack were observed : center line crack({TEX}$C_{C}${/TEX}), diagonal crack({TEX}$C_{D}${/TEX}), and U shape crack({TEX}$C_{U}${/TEX}). Also, HAZ crack({TEX}$C_{H}${/TEX}) was observed in the HAZ region, furthermore, mixing crack({TEX}$C_{M}${/TEX}) consisting of diagonal crack and HAZ crack was observed. White film was formed at th hot crack region in the fractured surface after it was immersed to 10% NaOH water. In the case of A5083 alloy, white films in {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack region were composed of low melting phases, {TEX}$Fe_{2}SiAl_{8}${/TEX} and eutectic phases, $Mg_2$Al$_3$ and $Mg_2$Si. Such films observed $CuAl_2$, {TEX}$Mg_{32}(Al,Zn)_{3}${/TEX}, MgZn$_2$, $Al_2$CuMg and $Mg_2$Si were observed in the whitely etched films near {TEX}$C_{C}${/TEX} crack and {TEX}$C_{D}${/TEX} crack regions. The formation of liquid films was due to the segregation of Mg, Si, Fe in the case of A5083 alloy and Zn, Mg, Cu, Sim in the case of A7N01 alloy, respectively. The {TEX}$C_{C}${/TEX} and {TEX}$C_{D}${/TEX} cracks were regarded as a result of the occurrence of tensile strain during the welding process. The formation of {TEX}$C_{M}${/TEX} crack is likely to be due to the presence of liquid film at the grain boundary near the fusion line in the base metal as well as in the weld fusion zone during solidification. The {TEX}$C_{U}${/TEX} crack is considered a result of the collapsed keyhole through incomplete closure during rapid solidification.

  • PDF

Effect of Initial Texture on the Twinning Formation of AZ31 Mg Alloy (AZ31 Mg 합금의 쌍정 형성에 미치는 초기 집합조직의 영향)

  • Lee, Byoung-Ho;Kim, Yong-Woo;Park, Sung-Hyuk;Lee, Chong-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.467-472
    • /
    • 2007
  • In this study, the effects of initial texture on the twinning formation of AZ31 Mg rolled sheet was investigated. Uniaxial compression tests were carried out on samples cut along the normal direction(ND) and roiling direction(RD), respectively, of rolled AZ31 Mg alloy sheet at various temperatures (RT, 200, 250, 300, 350, $400^{\circ}C$) with the fixed strain rate($10^{-2}/s$). The results showed that deformation twining occurred actively only in the RD specimens, which promoted homogeneous deformation as compared to the ND specimens. The effect of temperature on the formation of deformation twins was also investigated, and the slip/twin transition temperature was found to be approximately $250^{\circ}C$.

Microstructure and Properties of High Strength High Ductility Al-Mg-Zn Casting Alloy (고강도 고인성 Al-Mg-Zn 주조합금의 미세조직 및 특성)

  • Kim, Jeong-Min;Ha, Tae-Hyung
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.181-186
    • /
    • 2016
  • The typical microstructure of Al-5%Mg-2%Zn cast alloy mainly consists of an aluminum matrix with a small amount of AlMgZn 2nd phase. The secondary dendrite arm spacing and the grain size of the cast alloy tend to be inversely proportional to the section thickness of casting; however, the tensile properties cannot be said to be clearly related to the cast microstructure. After T6 heat treatment, the tensile strength of the alloy was enhanced significantly. TEM analysis results show that very fine AlMgZn precipitates were formed after the heat treatment. The corrosion resistance, measured according to the corrosion potential, was found to increase slightly after the conducting of heat treatment.