• Title/Summary/Keyword: Heat Transfer Characteristic

Search Result 302, Processing Time 0.025 seconds

A Study on the Productivity Improvement of Thermal Infrared Camera an Optical Lens (열적외선 카메라용 광학계 생산성 향상에 관한 연구)

  • Kim, Sung-Yong;Hyun, Dong-Hun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.285-293
    • /
    • 2009
  • Thermal infrared cameras have been conducted actively in various application areas, such as military, medical service, industries and cars. Because of their characteristic of sensing the radiant heat emitted from subjects in the range of long-wavelength($3{\sim}5{\mu}m$ or $8{\sim}12{\mu}m$), and of materializing a vision system, when general optics materials are used, they don't react to the light in the range of long-wavelength, and can't display their optic functions. Therefore, the materials with the feature of higher refractive index, reacting to the range of long-wavelength, are to be used. The kinds of materials with the characteristic of higher refractive index are limited, and their features are close to those of metals. Because of these metallic features, the existing producing method of optical systems were direct manufacturing method using grinding method or CAD/CAM, which put limit on productivity and made it difficult to properly cope with the increasing demand of markets. GASIR, a material, which can be molded easily, was selected among infrared ray optics materials in this study, and the optical system was designed with two Aspheric lenses. Because the lenses are molded in the environment of high temperature and high pressure, they require a special metallic pattern. The metallic pattern was produced with materials with ultra hardness that can stand high temperature and high pressure. As for the lens mold, GMP(Glass Molding Press) of the linear transfer method was used in order to improve the productivity of optical systems for thermal infrared cameras, which was the goal of this paper.

  • PDF

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (II) - Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(II) - 작동유체 유동마찰저항 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The output of the Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of regenerator matrix, characteristics of flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. With the wire screen of No. 50 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 3 times higher than that of one directional flow, not too much influenced by the number of packed meshes. 2. With the wire screen of No. 100 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 2.5 times on the average higher than that of one directional flow, not too much influenced by the number of packed meshes. 3. Under one directional flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f=\frac{0.00326639}{Re\iota}-1.29106{\times}10^{-4}$$ 4. Under oscillating flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f_r=\frac{0.000918567}{Re\iota}+1.86101{\times}10^{-5}$$ 5. The pressure drop is shown as high in proportion as the number of meshes has been higher, and the number of packed wire screens as matrices increases.

Fabrication Process and Impact Characteristic Analysis of Metal Matrix Composite for Electronic Packaging Application (전자패키징용 금속복합재료의 제조공정 해석 및 충격특성평가)

  • 정성욱;정창규;남현욱;한경섭
    • Composites Research
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2002
  • This study developed fabrication process of $SiC_p/Al$ metal matrix composites as electronic packaging materials by squeeze casting method. The $SiC_p$ preform were fabricated in newly designed preform mold using about 0.8 % of inorganic binder(SiO$_2$) and 5 vol.% of $Al_2O_3$fiber. To infiltrate the molten metal into the preform, fabrication condition such as the temperature and the pressure were selected. Applying the fabrication conditions, heat transfer analysis were preformed using finite element method and thus analyzed the temperature distribution and cooling characteristic during the squeeze casting. For the fabricated composites, impact toughness and thermal expansion coefficient were measured. The metal matrix composites developed in this study have 0.2~0.3 J impact toughness, $8~10 ppm/^{\circ}C$ thermal expansion coefficient and $2.9~3.0g/cm^3$density which is appropriate properties for electronic packaging application.

Characteristic Analysis of BIPV Module according to Rear Materials (후면부재에 따른 BIPV 모듈의 특성 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.

Counter-Current Flow Limitation Model Based on the Hyperbolic Two-fluid Equations and Interface Shape Function (쌍곡선형 이상유동 방정식과 경계면 모양함수를 이용한 유체기계의 역류유동제한점 예측방법 개발)

  • 정지환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • There are lots of industrial machines of which functions are achieved by operation of multi-phase fluids. Some of them take advantage of the characteristics of counter-current two-phase flow The maximum flow rates of gas and liquid phases which flow in opposite-directions (counter-current flow) are limited by a phenomenon known as a Counter-Current Flow Limitation (CCFL or Flooding) The mass and momentum conservation equations for each Phase were established to build a first-order hyperbolic partial derivative equations system. A new CCFL model is developed based on the characteristic equation of the hyperbolic PDE system. The present model has its applicationto the case in which a non-uniform flow is developed around a square or sharp-edged entrance of liquid phase. The model is able to he used to Predict the operating-limit of components in which mass and heat transfer are taking place between liquid and gas phases.

  • PDF

A Study on Combustion Characteristic with Chamber Pressure in Hybrid Rocket (하이브리드 로켓에서의 압력에 따른 연소특성에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Hak-Chul;Park, Seon-Woo;Park, Joon-Hyng;Han, Hee-Soo;Hwang, Jae-Woong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-246
    • /
    • 2008
  • The combustion characteristic of solid fuel with chamber pressure were experimentally studied in hybrid combustion. This paper was experimental confirmed whether solid fuel affected not only oxidizer mass flux but also chamber pressure. Poly-Ethylene(PE) was used as fuel, GOX was used as oxidizer. Chamber pressure was controled by nozzle throat diameter 6mm and 9mm. In low oxidizer mass flux, solid fuel regression rate was affected not only oxidizer mass flux but also chamber pressure. As well, the regression rate increase as chamber pressure increase with same oxidizer mass flux.

  • PDF

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Numerical Investigation of Blackbody Design for Spaceborne Image Sensor Non-uniformity Characteristic Calibration (우주용 영상센서 출력특성 교정용 흑체 설계의 해석적 유효성 검토)

  • Kim, Hye-In;Choi, Pil-Gyeong;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.3
    • /
    • pp.42-50
    • /
    • 2020
  • For calibration of the non-uniformity characteristics of the space-borne infrared (IR) sensor, a black body system shall provide estimated representative surface temperature at various reference temperatures by using the limited number of temperature sensors. The black body system proposed in this study has an I/F flange integrated on the rear side of the black body for installation of the heat pipe to transfer the residual heat after the black body heat-up. This design allows for obtaining a circular symmetric thermal contour of black body with low surface temperature gradient, leading to much easier representative temperature estimation. Additionally, this provides mechanically stable thermal I/F under launch and on-orbit environmental loads, as well as allowing a fail safe design by using the two heat pipes. Also, a highly accurate temperature estimation is possible even if the temperature sensors are attached on the surface on the rear side of the black body. The effectiveness of the thermal design of the proposed black body has been verified through the on-orbit thermal analysis. Based on the results, the representative surface temperature was estimated according to the number and position of the temperature sensors.

A numerical study on the characteristics of the smoke movement and the effects of structure in road tunnel fire (도로터널 화재시 연기의 전파특성과 구조체에 미치는 영향에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Oh, Byung-Chil;Kim, Hyo-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.289-300
    • /
    • 2013
  • This study numerically considered the characteristic of smoke movement and the effect of hot smoke gas on tunnel wall surface temperature during road tunnel fire under boundary condition of fire growth curve that is applied to fire analysis in road tunnels. The maximum heat release rate were 20 MW and 100 MW and tunnel air velocities were 2.5 m/s and velocity induced by thermal buoyancy respectively, also the cooling effect of tunnel wall was considered. As results, when tunnel air velocity was constant at 2.5 m/s during tunnel fire, due to the cooling effect of tunnel wall, the smoke layer was rapidly descent after some distance and it flowed the same patterns at the downstream. When heat release rate was 100 MW (and jet fan was not installed), the maximum temperature of tunnel wall surface has risen up to $615^{\circ}C$. The heat transfer coefficient of tunnel wall surface was varied from 13 to $23W/m^2^{\circ}C$ approximately.

Greenhouse Gas Reduction and Marine Steel Plate Tensile Properties When Using Propylene Flame in the Cutting Process (프로필렌 화염을 이용한 선박용 철판 가공 시 온실가스 감소 효과 및 재료의 인장 특성에 미치는 영향 연구)

  • Kim, Do Hyeon;Kim, Dong Uk;Seo, Hyoung-Seock
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.639-647
    • /
    • 2022
  • The use of flames is essential in cutting, bending, and welding steel during a ship's construction process. While acetylene fuel is commonly used in steel cutting and the manufacturing process in shipyards, the use of propane as an alternative fuel has recently been increasing, due to the lower risk of explosion and propane's relatively low calorific value. However, propane fuel has a relatively slow processing speed and high slag generation frequency, thereby resulting in poor quality. Propylene is another alternative fuel, which has an excellent calorific value. It is expected to gain wider use because of its potential to improve the quality, productivity, and efficiency of steel processing. In this study, the combustion characteristics of propane and propylene fuel during steel plate processing were analyzed and compared. The reduction of greenhouse gases and other harmful gases when using propylene flame was experimentally verified by analyzing the gases emitted during the process. Heat distribution and tensile tests were also performed to investigate the effects of heat input, according to processing fuel used, on the mechanical strength of the marine steel. The results showed that when propylene was used, the temperature was more evenly distributed than when propane fuel was used. Moreover, the mechanical tests showed that when using propylene, there was no decrease in tensile strength, but the strain showed a tendency to decrease. Based on the study results, it is recommended that propylene be used in steel processing and the cutting process in actual shipyards in the future. Additionally, more analysis and supplementary research should be conducted on problems that may occur.