• 제목/요약/키워드: Heat Shock Protein

검색결과 604건 처리시간 0.026초

붕어와 마우스의 간세포 배양에서 열 스트레스에 의해 유도되는 heat shock factor1 (HSF1)의 비교 (Comparison of Thermal Stress Induced Heat Shock Factor 1 (HSF1) in Goldfish and Mouse Hepatocyte Cultures)

  • 김소선;소재형;박장수
    • 생명과학회지
    • /
    • 제26권12호
    • /
    • pp.1360-1366
    • /
    • 2016
  • Heat shock proteins (HSPs)은 다양한 생리학적인 또는 환경적 스트레스에 응답하여 유도된다. 그러나 HSPs의 전사 활성은 heat shock factors (HSFs)에 의해 조절 된다. 현재 연구에서는 붕어와 마우스의 간세포 배양에서 열 스트레스에 의한 heat shock factor 1 (HSF1)의 패턴 차이와 heat shock protein 70 (HSP70)의 발현을 면역분석법을 이용하여 조사하였다. 붕어의 간세포는 $33^{\circ}C$에서 trimer를 이루지만 마우스의 간세포는 $42^{\circ}C$에서 trimer를 이루었다. 이 연구는 붕어와 마우스의 HSF1은 열 스트레스로부터 다른 온도에서 반응을 한다는 것을 보여준다. 또한 재조합 단백질을 이용하여 붕어와 인간의 HSF1의 온도에 따른 활성 조건을 CD spectroscopy와 면역분석을 이용하여 조사하였다. 이러한 결과들은 인간과 마우스 HSF1과 붕어의 HSF1은 온도에 의한 활성 변화를 보이지만 그들의 최적 활성 온도는 다르다는 것을 알 수 있다.

Expression of Heat Shock Protein Protein 70 in Umbilical Vein Endothelial Cells Infected by Staphylococcus aureus

  • Chang, Hyun-Ah;Chang, Jun-Keun;Kim, Jong-Won;Kim, Mal-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권2호
    • /
    • pp.137-142
    • /
    • 2000
  • Environmental stres is known to induce heat shock proteins (HSPs) in eukaryotic cells. However, the induction of HSPs in host cells by microbial infection has not yet been well explained. Staphylococcus aureus (S. aureus) is one of the major pathogens in the pathogenesis of endovascular diseases such as infective endocarditis. In this study, the synthesis of stress-inducible 70 kDa HSP was investigated in the endothelial cells (ECs) after 3 h to 20 h of incubation with S. aureus. The dffect of S. aureus infection on the expression of HSP70 in cultured ECs was analyzed using laser scanning confocal microscopy (LSCM). The increase of HSP70 expression in ECs infected by S. aureus ($10^4{\;}cfu/ml$) for 20 h was 1.1-fold higher than that in heat shock treated ECs and 2.2-fold higher than that in untreated cells. Heat shock is known to induce intranucleus HSP70 expression in mammalian cells, whereas the S. aureus infection induced perinuclear expression in ECs as observed by LSCM. Consequently, the expression of HSP70 in ECs plays an important role in the pathogenesis of endovascular infection.

  • PDF

Characterization of a Low Molecular Weight Heat-Shock Protein cDNA Clone from Nicotiana tabacum

  • Park, Soo-Min;Joe, Myung-Kuk;Hong, Choo-Bong
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 춘계학술발표대회:발표논문요지록
    • /
    • pp.18-18
    • /
    • 1999
  • We characterized a cDNA clone for a low molecular weight heat-shock protein (LMW HSP) from tobacco named TLHS-l. Nucleotide sequence determination of TLHS-1 identified an open reading frame for 159 amino acids. To the upstream of the open reading frame, a sequence of 124 nucleotides was determined. To the 3' downstream of the open reading frame, 212 nucleotides were identified which carried poly(A)-tail. Comparison of the open reading frame and hydropathy plot of TLHS-1 with the previously reported class I LMW HSPs showed high identity which classified TLHS-1 as a class I LMW HSP cDNA clone. We proposed that there are six consensus regions in class I LMW HSPs. RNA blot hybridization for TLHS-1 showed a typical expression pattern of heat-shock-inducible gene from three common tobacco cultivars. The open reading frame of TLHS-1 was overexpressed in Escherichia coli. TLHS-1 protein confers thermal protection of other proteins in vitro and in vivo. Thermal induced aggregation of citrate synthase was reduced by purified TLHS-1 protein, and thermal death rate at $50^{\circ}C$ was reduced in E. coli expressing TLHS-l. From these data, we can expect that TLHS-1 acts as a molecular chaperone.perone.

  • PDF

Heat Shock Stress에 의한 Lactobacillus acidophilus 30SC의 생리적 특성 (Physiological Properties of Lactobacillus acidophilus 30SC Exposed to Heat Shock Stress)

  • 문용일;한수민;박동준;지연태;김광현;오세종
    • 한국축산식품학회지
    • /
    • 제25권3호
    • /
    • pp.350-356
    • /
    • 2005
  • Probiotics로서의 활성이 높은 Lactobacillus acidophilus 30SC의 생존성을 증진시키기 위한 기초 자료를 얻고자, heat shock stress를 가한 후 생균수를 측정하고, 생존율의 변화를 통해 고온 처리에 의한 고온 및 냉동 내성의 증진 효과를 평가하였다. 또한 열처리 동안 새로이 발현되는 단백질을 1차원 및 2차원 전기영동을 이용하여 확인하였으며, 주사전자현미경을 사용하여 세포 모양을 관찰하였다. L. acidophilus 30SC는 $55^{\circ}C$의 heat shock stress를 받았을 때 생존 균수가 감소하는 것으로 나타났다. 나머지 처리구는 $37^{\circ}C$에서 계속 배양한 것과 별다른 차이를 나타내지 않았다. 특히 $45^{\circ}C$로 heat shock stress를 준 경우 $37^{\circ}C$에서 배양한 것과 거의 동일하였다. L. acidophilus 30SC에 $45^{\circ}C$로 heat shock stress를 가한 뒤 추가로 55 및 $60^{\circ}C$에 노출시켰을 때 가장 높은 생존율을 나타냈고, 치사 수준인 $55^{\circ}C$의 heat shock stress를 받은 후 $55^{\circ}C$$60^{\circ}C$에 노출되었을 때 생존율이 급격히 감소하는 경향을 보였다. L. acidophilus 30SC에 $55^{\circ}C$로 15분 Heat shock stress를 준 경우 약 22와 25 kDa의 단백질들이 새로이 발현된 것으로 나타났으나, 24와 27 kDa로 추정되는 단백질의 발현 정도는 낮았음을 확인하였다. 2차원 전기영동을 실시한 결과, $37^{\circ}C$에서 배양한 대조구와 비교할 때 $55^{\circ}C$로 heat shock stress를 준 경우 새로이 5개의 protein spot을 발견할 수 있었다. 주사전자현미경으로 세포의 형태를 관찰한 결과 heat shock stress를 준 경우에는 세포의 길이가 신장되는 경향을 나타내었다.

어류 CHSE-214와 인간 HeLa 세포에서의 열충격에 의한 Heat Shock Protein의 발현 (Expression of the Heat Shock Proteins in HeLa and Fish CHSE-214 Cells Exposed to Heat Shock)

  • 공회정;강호성김한도
    • 한국동물학회지
    • /
    • 제39권2호
    • /
    • pp.123-131
    • /
    • 1996
  • In this study, we examined the expression of heat shock proteins (HSPs) in fish cell line CHSE-2lnl and human HeLa cells exposed to heat shock. In fish CHSE-214 cells HSP70 was the major polvpeptide induced by an elevated temperature or an amino acid analog, while in HeLa cells HSP90 as well as HSP70 were prominently enhanced in response to these stresses. Pretreatment of actinomvcin D prior to heat shock completely inhibited the induction of fish HSP70, indicating the transcriptional regulation of fish HSP70 gene expression. In HeLa and CHSE-214 cells either recovering from heat shock or experiencing prolonged heat shock, attenuation in the HSP90 a'nd HSP70 induction occurred but both induction and repression of HSP70 synthesis appear 19 precede those of HSP90. Moreover, attenuation did not occur in the syntheses of 40 kDa and 42 kOto proteins which were only induced in CHSE-214 cells. The enhanced syntheses of these he proteins continued as long as CHSE-214 cells were Siven heat shock. These results suggest that down-regulation of HSP syntheses during prolonged heat shock may be controlled by several different. as vet undefined, mechanisms.

  • PDF

Roles of Heat Shock Protein gp96 in the ER Quality Control: Redundant or Unique Function?

  • Yang, Yi;Li, Zihai
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.173-182
    • /
    • 2005
  • Heat shock protein gp96 is an endoplasmic reticulum chaperone, belonging to the HSP90 family. The function of gp96 as a molecular chaperone was discovered more than 10 years ago, but its importance has been overshadowed by the brilliance of its role in immune responses. It is now clear that gp96 is instrumental in the initiation of both the innate and adaptive immunity. Recently, the roles of gp96 in protein homeostasis, as well as in cell differentiation and development, are beginning to draw more attention due to rapid development in the structural study of HSP90 and some surprising new discoveries from genetic studies of gp96. In this review, we focus on the aspect of gp96 as an ER molecular chaperone in protein maturation, peptide binding and the regulation of its activity.

SCK종양 세포에서Stress Protein의 합성유도 (Induction of Stress Proteins in the SCK Tumor Cells)

  • 강만식;김경희
    • 한국동물학회지
    • /
    • 제31권3호
    • /
    • pp.157-164
    • /
    • 1988
  • SCK종양세포에 온열처리와 여러가지 sulihydryl-reacting agents을 처리하여 stress protein의 합성을 유도하고, 그 양상을 검토해 봄으로서 stress proteins의 합성유도와 denatured protein의 생성과의 관계를 고찰하였다. 세포에 cycloximid와 더불어 Zn또는 ME를 처리한 경우에는 stress protein의 합성이 일어나지 않았으나,온열처리 또는 IAA를 처리한 경우에는 stress protein의 합성이 유도되었다. 이 결과로 미루어 볼 때,stress protein의 유도 경로에는 두 가지가 있어서 새로운 단백질의 합성이 필요한 경로와 새로운 단백질의 합성과는 무관한 경로가 있는 것으로 추정할 수 있었다. 결국, 본 실험에서 사용한 stress들이 기존의 mature protein을 denature시키거나 (온열처리 또는 IAA),새로 합성된 immature protein을 denatur시키는 것,(Zn 또는 ME)으로 알려져 있으므로,stress에 의한 abnormal protein의 출현이 stress proteins의 합성을 유도하는 tigger의 구실을 하는 것으로 생각된다. 이 밖에 여러 가지 stress가 동시에 작용할 경우, 세포는 보다 강한 stress에 대해서 stress protein을 합성하여 대치하게 되는 것으로 생각된다.

  • PDF

골모세포에서 열자극에 의한 Hsp27 발현에 대한 연구 (HSP27 EXPRESSION IN OSTEOBLAST BY THERMAL STRESS)

  • 임재석;김병렬;권종진;장현석;이의석;전상호;우현일
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권1호
    • /
    • pp.11-21
    • /
    • 2008
  • Aim of the study: Thermal stress is a central determinant of osseous surgical outcomes. Interestingly, the temperatures measured during endosseous surgeries coincide with the temperatures that elicit the heat shock response of mammalian cells. The heat shock response is a coordinated biochemical response that helps to protect cells from stresses of various forms. Several protective proteins, termed heat shock proteins (hsp) are produced as part of this response. To begin to understand the role of the stress response of osteoblasts during surgical manipulation of bone, the heat shock protein response was evaluated in osteoblastic cells. Materials & methods: With primary cell culture studies and ROS 17/2.8 osteoblastic cells transfected with hsp27 encoding vectors culture studies, the thermal stress response of mammalian osteoblastic cells was evaluated by immunohistochemistry and western blot analysis. Results: Immunocytochemistry indicated that hsp27 was present in unstressed osteoblastic cells, but not fibroblastic cells. Primarily cultured osteoblasts and fibroblasts expressed the major hsp in response to thermal stress, however, the small Mr hsp, hsp27 was shown to be a constitutive product only in osteoblasts. Creation of stable transformed osteoblastic cells expressing abundant hsp27 protein was used to demonstrate that hsp27 confers stress resistance to osteoblastic cells. Conclusions: The demonstrable presence and function of hsp27 in cultured bones and cells implicates this protein as a determinant of osteoblastic cell fate in vivo.

Thermotolerance Inhibits Various Stress-induced Apoptosis in NIH3T3 Cells

  • Park, Jun-Eui;Lee, Kong-Joo;Kim, Choon-Mi
    • Archives of Pharmacal Research
    • /
    • 제21권1호
    • /
    • pp.46-53
    • /
    • 1998
  • When NIH3T3 cells were exposed to mild heat and recovered at $37^{\circ}C$ for various time intervals, they were thermotolerant and resistant to subsequent stresses including heat, oxidative stresses, and antitumor drug methotrexate which are apoptotic inducers. The induction kinetics of apoptosis by stresses were determined by DNA fragmentation and protein synthesis using $[35^S]$methionine pulse labeling. We investigated the hypothesis that thermotolerant cells were resistant to apoptotic cell death compared to control cells when both cells were exposed to various stresses inducing apoptosis. The cellular changes in thermotolerant cells were examined to determine which components are involved in this resistance. At first, the degree of resistance correlates with the extent of heat shock protein synthesis which were varied depending on the heating times at $45^{\circ}C$ and recovery times at $37^{\circ}C$after heat shock. Secondly, membrane permeability change was observed in thermotolerant cells. When cells prelabeled with $[^{3}H]$thymidine were exposed to various amounts of heat and recovered at $37^{\circ}C$ for 1/2 to 24 h, the permeability of cytosolic $[^{3}H]$thymidine in thermotolerant cells was 4 fold higher than that in control cells. Thirdly, the protein synthesis rates in thermotolerant and control cells were measured after exposing the cells to the same extent of stress. It turned out that thermotolerant cells were less damaged to same amount of stress than control cells, although the recovery rates are very similar to each other. These results demonstrate that an increase of heat shock proteins and membrane changes in thermotolerant cells may protect the cells from the stresses and increase the resistance to apoptotic cell death, even though the exact mechanism should be further studied.

  • PDF